MATLAB Course November-December 2006

Ab Mooijaart Matthijs Warrens & Eeke van der Burg

- MATLAB: Matrix Laboratory
- The Math Work Inc.
- See "Getting Started with MATLAB, version 6"

Chapter 1: Elementary operations Chapter 2: M-files Chapter 3: Graphics Chapter 4: Optimization Chapter 5: Assignment

MATLAB Course November-December 2006

Chapter 1: Elementary operations

• >> place for action in Matlab command window

• Create matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 5 & 2 \\ 7 & 2 & 4 & 5 \\ 8 & 1 & 3 & 2 \end{pmatrix}$$
.

- Show element A(1,3)>>A(1,3)
- Compute sum of columns >> sum (A)
- Operator colon ":",
 - >>A(1,:)
- Use the colon for selection of parts of matrix A >>A(1,2:3)
- Building blocks of expressions
 - o Variables
 - >>x=[1 -2 3], x is a (1×3) array.
 - Numbers, real, integer, complex >>x=[1:1:8]
 - o Operators
 - o Functions
- Give examples
- Operators on two matrices A and B (if sizes correct, and symmetric if necessary)
 - \circ + sum, >>A+B
 - o difference, >>A-B
 - \circ * product, >>A*B
 - \circ / division, >>A/B is equal to AB^{-1}
 - \circ \ division, >>A\B is equal to $A^{-1}B$
 - \circ ^ power >>A^3 is equal to A×A×A
 - \circ ' transpose, >>A'
 - .^ element wise power, >>A.^2
 - \circ .* element wise product, >>A.*B

- Functions:
 - o abs absolute value
 - o sqrt square route
 - o exp exponent
 - o sin sinus
 - o size dimensions of a matrix
 - o inv inverse of a matrix
 - o det determinant of a matrix

Information about functions

Type:

For list of elementary mathematical functions
help elfun
For list of advanced mathematical and matrix functions
help specfun
help elmat
help matfun

For special function type:

help function name

For instance

>> help zeros

ZEROS Zeros array.
ZEROS(N) is an N-by-N matrix of zeros.
ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.
ZEROS(M,N,P,...) or ZEROS([M N P ...]) is an M-by-N-by-Pby-... array of zeros.
ZEROS(SIZE(A)) is the same size as A and all zeros.

See also EYE, ONES.

If you do not know the exact name of a function type:

lookfor

>> help elfun

Elementary math functions.

Trigonometric.

rigonomet	.I.I.C.
sin	- Sine.
sinh	- Hyperbolic sine.
asin	- Inverse sine.
asinh	- Inverse hyperbolic sine.
cos	- Cosine.
cosh	- Hyperbolic cosine.
acos	- Inverse cosine.
acosh	- Inverse hyperbolic cosine.
tan	- Tangent.
tanh	- Hyperbolic tangent.
atan	- Inverse tangent.
Atan2	- Four quadrant inverse tangent.
atanh	- Inverse hyperbolic tangent.
sec	- Secant.
sech	- Hyperbolic secant.
asec	- Inverse secant.
asech	- Inverse hyperbolic secant.
csc	- Cosecant.
csch	- Hyperbolic cosecant.
acsc	- Inverse cosecant.
acsch	- Inverse hyperbolic cosecant.
cot	- Cotangent.
coth	- Hyperbolic cotangent.
acot	- Inverse cotangent.
acoth	- Inverse hyperbolic cotangent.

Exponential.

I	
exp	- Exponential.
log	- Natural logarithm.
log10	- Common (base 10) logarithm.
log2	- Base 2 logarithm and dissect floating point number.
pow2	- Base 2 power and scale floating point number.
realpow	- Power that will error out on complex result.
reallog	- Natural logarithm of real number.
realsqrt	- Square root of number greater than or equal to zero.
sqrt	- Square root.
nextpow2	- Next higher power of 2.

Complex.

o o mpronio	
abs	- Absolute value.
angle	- Phase angle.
complex	- Construct complex data from real and imaginary parts.
conj	- Complex conjugate.

imag	- Complex imaginary part.
real	- Complex real part.
unwrap	- Unwrap phase angle.
isreal	- True for real array.
cplxpair	- Sort numbers into complex conjugate pairs.

Rounding and remainder.

fix	- Round towards zero.
floor	- Round towards minus infinity.
ceil	- Round towards plus infinity.
round	- Round towards nearest integer.
mod	- Modulus (signed remainder after division).
rem	- Remainder after division.
sign	- Signum.
-	-

>> help specfun

Specialized math functions.

Specialized math functions

pecialized in	
airy	- Airy functions.
besselj	- Bessel function of the first kind.
bessely	- Bessel function of the second kind.
besselh	- Bessel functions of the third kind (Hankel function).
besseli	- Modified Bessel function of the first kind.
besselk	- Modified Bessel function of the second kind.
beta	- Beta function.
betainc	- Incomplete beta function.
betaln	- Logarithm of beta function.
ellipj	- Jacobi elliptic functions.
ellipke	- Complete elliptic integral.
erf	- Error function.
erfc	- Complementary error function.
erfcx	- Scaled complementary error function.
erfinv	- Inverse error function.
expint	- Exponential integral function.
gamma	- Gamma function.
gammainc	- Incomplete gamma function.
gammaln	- Logarithm of gamma function.
psi	- Psi (polygamma) function.
legendre	- Associated Legendre function.
cross	- Vector cross product.
dot	- Vector dot product.

Number theoretic functions.

- factor Prime factors.
- Isprime True for prime numbers.
- primes Generate list of prime numbers.
- gcd Greatest common divisor.
- lcm Least common multiple.
- rat Rational approximation.
- rats Rational output.
- perms All possible permutations.
- nchoosek All combinations of N elements taken K at a time.
- factorial Factorial function.

Coordinate transforms.

cart2sph	- Transform Cartesian to spherical coordinates.
cart2pol	- Transform Cartesian to polar coordinates.
pol2cart	- Transform polar to Cartesian coordinates.
sph2cart	- Transform spherical to Cartesian coordinates.
hsv2rgb	- Convert hue-saturation-value colors to red-green-blue.
rgb2hsv	- Convert red-green-blue colors to hue-saturation-value.

>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.

zeros	- Zeros array.
ones	- Ones array.
eye	- Identity matrix.
repmat	- Replicate and tile array.
rand	- Uniformly distributed random numbers.
randn	- Normally distributed random numbers.
linspace	- Linearly spaced vector.
logspace	- Logarithmically spaced vector.
freqspace	- Frequency spacing for frequency response.
meshgrid	- X and Y arrays for 3-D plots.
:	- Regularly spaced vector and index into matrix.

Basic array information.

- size Size of array.
- length Length of vector.
- ndims Number of dimensions.
- numel Number of elements.
- disp Display matrix or text.
- isempty True for empty array.
- isequal True if arrays are numerically equal.

isequalwithequalnans - True if arrays are numerically equal.

isnumeric - True for numeric arrays.

islogical	- True for logical array.
logical	- Convert numeric values to logical.

Matrix manipulation.

1710001125 11100	mpulation
cat	- Concatenate arrays.
reshape	- Change size.
diag	- Diagonal matrices and diagonals of matrix.
blkdiag	- Block diagonal concatenation.
tril	- Extract lower triangular part.
triu	- Extract upper triangular part.
fliplr	- Flip matrix in left/right direction.
flipud	- Flip matrix in up/down direction.
flipdim	- Flip matrix along specified dimension.
rot90	- Rotate matrix 90 degrees.
:	- Regularly spaced vector and index into matrix.
find	- Find indices of nonzero elements.
end	- Last index.
sub2ind	- Linear index from multiple subscripts.
ind2sub	- Multiple subscripts from linear index.

Multi-dimensional array functions.

ndgrid	- Generate arrays for N-D functions and interpolation.
permute	- Permute array dimensions.
ipermute	- Inverse permute array dimensions.
shiftdim	- Shift dimensions.
circshift	- Shift array circularly.
squeeze	- Remove singleton dimensions.

Special variables and constants.

1	
ans	- Most recent answer.
eps	- Floating point relative accuracy.
realmax	- Largest positive floating point number.
realmin	- Smallest positive floating point number.
pi	- 3.1415926535897
ī, j	- Imaginary unit.
inf	- Infinity.
NaN	- Not-a-Number.
isnan	- True for Not-a-Number.
isinf	- True for infinite elements.
isfinite	- True for finite elements.
-	~ .

why - Succinct answer.

Specialized matrices.

compan- Companion matrix.gallery- Higham test matrices.hadamard- Hadamard matrix.hankel- Hankel matrix.hilb- Hilbert matrix.

invhilb	- Inverse Hilbert matrix.
magic	- Magic square.
pascal	- Pascal matrix.
rosser	- Classic symmetric eigenvalue test problem.
toeplitz	- Toeplitz matrix.
vander	- Vandermonde matrix.
wilkinson	- Wilkinson's eigenvalue test matrix.

>> help matfun

Matrix functions - numerical linear algebra.

Matrix analysis.

	•
norm	- Matrix or vector norm.
normest	- Estimate the matrix 2-norm.
rank	- Matrix rank.
det	- Determinant.
trace	- Sum of diagonal elements.
null	- Null space.
orth	- Orthogonalization.
rref	- Reduced row echelon form.
subspace	- Angle between two subspaces.

Linear equations.

\setminus and /	- Linear equation solution; use "help slash".
inv	- Matrix inverse.
rcond	- LAPACK reciprocal condition estimator
cond	- Condition number with respect to inversion.
condest	- 1-norm condition number estimate.
normest1	- 1-norm estimate.
chol	- Cholesky factorization.
cholinc	- Incomplete Cholesky factorization.
lu	- LU factorization.
luinc	- Incomplete LU factorization.
qr	- Orthogonal-triangular decomposition.
lsqnonneg	- Linear least squares with nonnegativity constraints.
pinv	- Pseudoinverse.
lscov	- Least squares with known covariance.

Eigenvalues and singular values.

- eig Eigenvalues and eigenvectors.
- svd Singular value decomposition.
- gsvd Generalized singular value decomposition.
- eigs A few eigenvalues.
- svds A few singular values.
- poly Characteristic polynomial.
- polyeig Polynomial eigenvalue problem.
- condeig Condition number with respect to eigenvalues.

hess	- Hessenberg form.
qz	- QZ factorization for generalized eigenvalues.
schur	- Schur decomposition.

Matrix functions.

- expm Matrix exponential.
- logm Matrix logarithm.
- sqrtm Matrix square root.
- funm Evaluate general matrix function.

Factorization utilities

- qrdelete Delete a column or row from QR factorization.
- qrinsert Insert a column or row into QR factorization.
- rsf2csf Real block diagonal form to complex diagonal form.
- cdf2rdf Complex diagonal form to real block diagonal form.
- balance Diagonal scaling to improve eigenvalue accuracy.
- planerot Givens plane rotation.
- Cholupdate rank 1 update to Cholesky factorization.
- qrupdate rank 1 update to QR factorization.

Working with matrices

Basic matrices

- zeros
- ones
- rand random numbers
- randn random numbers from standard normal distribution

Basic functions of a matrix

- mean
- corrcoef
- cov
- var
- diag diag(A) is a vector with diagonal elements of A
- diag(diag) diag(diag(A)) is a diagonal matrix with elements diag(A)

for description type: help *function name*

Search in MATLAB

Help MATLAB he index	elp	
eg random n	umber genera	ators
function	ons	
	normrnd unidrnd unifrnd	 normalized random numbers discrete uniform random numbers continuous uniform random numbers
eg randn		- random numbers normally standardized

Exercises Chapter 1

1: Generate two matrices \mathbf{A} and \mathbf{B} of order (5 x 5), in which matrix \mathbf{A} is a symmetric matrix, and

1a: compute **A** + **B**, **A** - **B**, **AB**.

1b: compute the determinant of **A**.

1c: compute the inverse of A and verify that this inverse is correct.

1d: compute the eigenvalues and eigenvectors of matrix A.

1e: Generate a matrix C of order (6 x 3) and compute the singular value decomposition (svd) of C. Verify that this decomposition is correct by comparing the results with the eigenvectors and eigenvalues of C'C and CC'.

2: The scores of 5 subjects are given in matrix \mathbf{X} for the independent variables and for the dependent variable in vector \mathbf{y} .:

	(10)		(1	6	28)
y =	20		1	12	40
	17	and $\mathbf{X} =$	1	10	32 .
	12		1	8	36
	(11)		(1	9	34)

2a: Estimate the regression weights in a multiple regression with $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$. Here it holds: $\hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.

2b: Compute the vector of errors and the variance of the errors.

2c: Compute the eigenvectors V and the eigenvalues **D** of **X'X**. Next compute $(VDV')^{-1}$ and compare this with $(X'X)^{-1}$.

2d: Compute $(\mathbf{X'X})^2$ and $\mathbf{VD}^2\mathbf{V'}$ and compare them.

3: The scores of 4 subjects on two variables are given in the following matrix.

$$\mathbf{X} = \begin{pmatrix} 2 & 5 \\ 5 & 5 \\ 2 & 4 \\ 3 & 2 \end{pmatrix}.$$

3a: Transform this matrix into a matrix in which the scores are in deviations of the column means.

3b: Compute the covariance matrix (devide by n) and apply the MATLAB function cov to **X**. Can you explain the difference in results?

3c: Compute the standardized **X**-scores (means 0 and variances 1) and place them in **Z**. 3d: Compute the correlation matrix of the **X**-scores by applying the MATLAB function corrected to **X** and compare it with the covariance matrix of **Z** (devided by n).

3e: Carry out a principal component analysis on this correlation matrix and show the eigenvectors **V**, the eigenvalues **D** and the component scores **ZV**. Are the component scores standardized?

3f: Compute the component loadings, which are the correlations between **Z** and the component scores. Compare the component loadings with $\mathbf{V'D}^{1/2}$. Why are they similar? 3g: Apply the function corrcoef to $[\mathbf{Z}, \mathbf{Z}^*\mathbf{V}]$. Do you find the component loadings? What does the other blocks mean?