
MATLAB Chapter 2

1

MATLAB Course

November-December 2006

Chapter 2: M-files

General information
Windows

MATLAB works with several windows. In the command window statements can be
typed and executed by pressing the ‘Enter’ button. MATLAB makes a history of all
statements used in the history window. Previous statements can be toggled through with
the ‘↑’ button or can be selected from the history window.

Functions can be edited in the m-file editor (If not open: File > New > M-file). MATLAB
saves a function under the name (*.m) corresponding to the name used within the
function. Functions can be executed by running the function name in the command
window. Note, that the current directory must indicate the location of the function. This
can be changed by selecting the location with the scroll down button or using the
command:

cd ‘location of function’ (for example: cd ‘c:\windows\desktop\’ or cd ‘a:\matlab’)

When a statement ends with ‘;’ the result is not shown in the command window. The ‘%’
sign is used to indicate comment. Both functions and loops are indicated with blue.

Load SPSS data file into MATLAB
• SPSS: save data file as fixed ASCII file: NAME.dat (use points, no comma’s)
• MATLAB: see that NAME.dat is in the current directory
• Top bar: file, import data, NAME.dat, next, finish
• result: NAME contains the data (ask size(NAME) for checking the data matrix)
• remark: the description above is for the English versions

Adding a new current directory
• command window: line above shows the current directory
• ▼ (at the right above) shows the list of possible current directories (you can

choose)

• … (at the right above) makes it possible to add a file or folder to the list

MATLAB Chapter 2

2

Assignment

To define a matrix in MATLAB one must specify all the elements per row between
square brackets. The different rows need to be separated by a ‘;’. Of course, all rows must
be of equal length. The MATLAB code to define a matrix X and a vector y, is:

 >> % Define matrix X

>> X = [1 2 3;5 4 1;3 6 2]

X =
 1 2 3
 5 4 1
 3 6 2

>> % Define matrix y
>> y = [1; 3; 2]

y =
 1
 3
 2

Using functions

The above statements can also be put into a function:

function define
 X = [1 2 3;5 4 1;3 6 2]
 y = [1; 3; 2]

The function can be executed, by typing the name of the function in the command
window:

>> define

X =
 1 2 3
 5 4 1
 3 6 2

y =
 1
 3
 2

X, y are not defined outside the function. If you want to keep the values of X and y:

function [X,y]=define
X=[1 2 3;5 4 1;3 6 2]
y=[1;2;3]

MATLAB Chapter 2

3

 >> [X,y]=define
X =
 1 2 3
 5 4 1
 3 6 2

y =
 1
 3
 2

Now X and y are known in the MATLB command window. Other names can also be used e.g.
 >> [Z,p]=define

Z =
 1 2 3
 5 4 1
 3 6 2
p =
 1
 3
 2

If the data is already defined, it can be used in the function by using the expression

function multiply (X,y)
A = X * y

The function above will use both matrix X and vector y and calculate the product A.
Note: the function’s name for the example above is ‘multiply.m’.

If we have the above function, then we may type:

>> X = [1 2 3;5 4 1;3 6 2];

 >> y = [1; 3; 2];

The ’;’’ at the end is used to avoid the printing of the new value.

>> multiply

A =
 13
 19
 25

If we want the function to produce data so that it may be used outside the function, we
use the expression:

function [A]=multiply(X,y)
A = X * y

The result A obtained from the above function can be used for further purposes:

MATLAB Chapter 2

4

>> X = [1 2 3;5 4 1;3 6 2];

 >> y = [1; 3; 2];

>> [A]=multiply(X,y)

>> A
 13
 19
 25

Remark: the brackets [A] are not necessary, if only one matrix is between the brackets.

For more than one matrix, like the function [X,y]=define, they are necessary.

Using loops

We will consider in short two kinds of loops. The first one is the for – loop, which can be
used when the number of iterations is known. The second is the while – loop, which can
used when the number of iterations is not known and some criterion needs to be satisfied.

To demonstrate the for – loop we may define a column vector and add all element:

function loop(y)
%determine order of y
[n,p] = size(y);
%run loop
sum = 0;
for i = 1 : n
 sum = sum + y(i);
end
sum

>> y=[1;3;2]

y =
 1
 3
 2

>> loop(y)

sum =
 6
Note the ‘end’ expression, which marks the end of the loop. Within ‘for’ and ‘end’ all
statements are repeated n times.

MATLAB Chapter 2

5

To demonstrate the while – loop, we will add again the elements of a vector. But, this
time, the loop ends when the criterion ‘sum’ is satisfied:

function loop1(y)
sum = 0;
i = 1;
while sum < 3
 sum = sum + y(i);
 i = i + 1;
end
sum

>> y

y =

 1
 3
 2

>> loop1(y)

sum =

 4

Note, that the loop ends after two iterations, not starting a third, because the criterion
‘sum < 3’ is satisfied, as ‘sum = 4’.

MATLAB Chapter 2

6

Example 1

It holds:

2 3

1 ...
2! 3!

x x x
e x= + + + +

Make an m-file for finding an approximation of xe . Check this result for several values
of x.

function f=example1(x)
f=0;
crit=1e-10
dif=1;
i=-1;
while abs(dif) > crit
 i=i+1;
 dif=(x^i)/factorial(i);
 f=f+dif;
end

Another way to jump out off the loop in case of a very small difference:

function f=example1a(x)
f=0;
for i=0:200
 dif=(x^i)/(factorial(i));
 f=f+dif;
 if dif<.0000000001
 break
 end
end
i

>> f=example1a(1)

i =
 14

f =
 2.7183

MATLAB Chapter 2

7

logicals

symbols:

• > larger
• > = larger or equal
• < smaller
• < = smaller or equal
• = = equal
• ~ = not equal

Result is 0 (false) or 1 (true)

Example 2
>> a = 1;
>> b = 2;
>> a > b

ans =
 0

>> a < b

ans =
 1

>> a == b

ans =
 0

>> a ~= b

ans =
 1

MATLAB Chapter 2

8

The “if” statement

The structure is:

if “condition is true”
 execute statement(s)
else
 execute other statement(s)
end

Example 3

function example3
a=[1 -2 3 -4 -3 2]
sum1=0;
sum2=0;
for i=1:6
 if a(i) > 0
 sum1=sum1 + a(i);
 else
 sum2=sum2 + a(i);
 end
end
[sum1 sum2]

>> example3

a =
 1 -2 3 -4 -3 2

ans =

6 -9

MATLAB Chapter 2

9

Exercises chapter 2

1: Generate matrix A as a (5 x 3) random matrix and matrix B as a (3 x 4) matrix.
Compute the product of theses matrices by using several loops. Make an m-file of this
function and check the result with the standard operator of MATLAB.

2: It holds:

2 3 4

log(1) ... for 1 1.
2 3 4

x x x
x x x+ = − + − + − < ≤

Make an m-file for finding an approximation of log(1)x+ . Check this result for several
values of x.

3: Generate n standard normally distributed scores and compute the mean and the
standard deviations of these scores conditionally that they are larger than 0. Repeat this
for different values of n. For instance, n = 100, 1000, 10000,….

4: A polynomial is given as 2 2 1x x− + + . Equate this polynomial equal to 0 and find a
solution for x. Hint: start with the interval [1,4] and find the function values of the
endpoints of this interval. Compute the midpoint of this interval and compute the
corresponding function value. Find a way for finding a new smaller interval in which the
solution is situated and start the whole procedure all over. Repeat this till the end points
are “close” to each other.

5. Load the Sesamstreet data and compute the minimum, the maximum and the mean of
the ages. Compare the results with the SPSS output.

