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In the present paper we present distance-association models for the representation of
association in the analysis of cross-classified data. More specifically we present models for
the analysis of transition tables, i.e. cross-classifications of one variable measured at two
time points. Log-linear and log-bilinear models have become useful models for such data.
However, the interpretation of log-bilinear models is not direct. A graphical plot resulting
from a log-bilinear model can only be interpreted by projection. A reparametrization
results in an unfolding model with a graphical representation in which the distances
between points referring to the categories in the rows and the columns can be interpreted
directly. A large distance corresponds to a small association; a small distance corresponds

to a large association.
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1 INTRODUCTION

The last two decennia a wide variety of models for the analysis of contingency tables have
been proposed. Especially the work of Goodman (1972, 1979, 1981, 1985, 1986), Ander-
sen (1980), Gilula and Haberman (1986), Becker (1990), and Haberman (1974, 1978,
1979, 1995) on log-linear and RC(M )-association- and correlation models are important
developments. The latter models give an intermediate between the model of indepen-
dence and the saturated model in the traditional log-linear analysis approach, by various
restrictions on the association terms. In the present paper we will propose another model
in which the interpretation of the graphical representation is more straightforward than
the usual RC(M)-model parameterization. The topic is related to the difference between
Correspondence Analysis (CA; Nishisato, 1980; Gifi, 1990) and Multidimensional Scal-
ing (MDS; Borg and Groenen, 1997), and the generalization of the latter to rectangular
matrices, Multidimensional Unfolding (MDU; Heiser, 1981). In CA only the distances
within the set of row-points, or within the set of column-points can be interpreted di-
rectly, provided that certain coherent normalizations are chosen. The relation between
row- and column-points can only be assessed by projection (cf. Greenacre, 1984, 1993).
In MDS and MDU all distances between points can be interpreted directly. The inner
product rule in CA is replaced by a distance rule in MDU for the relationship between
row-points and column points. For a detailed discussion on the relationships between

MDS, MDU, and CA the reader is referred to Heiser and Meulman (1983).

2 THE RC(M)-ASSOCIATION MODEL

Let us start with a multiplicative model for the expected frequencies of a two-way con-

tingency table (7;;), that is
Tij = i3, (1)

where o, = 1,...,1, and §;,7 = 1,...,J, are main effect parameters, and the 7;; are
interaction parameters. If we set the interaction terms equal to unity we obtain the usual
model of independence. In empirical data we often find that the independence model
does not fit the data. Moreover, the saturated model fits the data but is of no use since

there is not any reduction of data. One way to proceed is to restrict the n;; parameters,



for example with a bilinear decomposition of the logarithm of the interaction term, i.e.

M
nij = exp( Z PrnlbimVjm)- (2)

m=1
This decomposition was proposed by Goodman (1979, 1981, 1985, 1986, 1991), under
the name RC(M)-association model. The complete model then is written as

M
Tij = Oéiﬁj exp( Z ¢m,uim7/jm)- (3)

m=1

The ¢,, are called intrinsic association parameters, the p;,, are called row-scores and the
Vjm are called column scores. If these scores originate from a singular value decomposi-
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tion, they satisfy 3, pu2,, = >; = 1, for each m, and >, plimhim' = 32 VjmVjm = 0 for
any pair of dimensions m and m’. If M = M* = min(I, J) — 1, the RC(M )-association
model is equal to the saturated model, if M = 0 the model reduces to the model of
independence. For the interpretation of this model usually graphical displays are used.
One often sees two single displays, one for the row scores and one for the column scores.
Since only indirect relations between the rows and indirect relations between the columns
are displayed, there is no way to really interpret the association. Only joint graphical
displays of the rows and the columns can show how any one category of the row variable
is associated with some category of the column variable.

A number of joint graphical displays can be used. However, as Greenacre (1984, p.65)

noted:

“There are advantages and disadvantages of the simultaneous display. Clearly
an advantage is the very concise graphical display expressing a number of dif-
ferent features of the data in a single picture. The display of each set of points
indicates the nature of similarities and dispersion within the set. Notice, how-
ever, that we should avoid the danger of interpreting the distances between the

points of different sets, since no such distances have been explicitely defined” .

In general all plots with row coordinates pj;,,, = ¢y, itim and column coordinates vy, =
on Vim, Where 7 + Kk = 1 are mathematically correct. In practice one often finds one of
the following graphical displays (here the terminology of a major statistical package is

used; cf. Meulman, Heiser and SPSS Inc., 1999):

1. Row principal normalization: Plot the row categories as points with coordinates

Wi = Omfbim, and the column categories as vectors with coordinates v,,. In row
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principal normalization, the Euclidean distances between the row points approxi-
mate (possibly weighted) Euclidean distances between the row entries of the con-
tingency table, after they have been logarithmically transformed and corrected for
the main effects. The column vectors have a direction and a length. The former
can be used to reconstruct the association with the row categories by projection,

the latter indicates how well a column fits the chosen dimensionality.

2. Column principal normalization: Plot the row categories as vectors with coordi-
nates p;, and the column categories as points with coordinates I/j’-m = OmVjm. The
interpretation of this display is analogous to (1), with the role of rows and columns

reversed.

3. Symmetric normalization: Plot the row categories as points with coordinates p,, =
qbr%nuim and the column categories as points with coordinates v, = gbv%nyjm. This
normalization spreads the intrinsic association terms symmetrically over the rows
and over the columns. Note that neither the distances between the row points
nor the distances between the column points are approximations to data related
distances. This plot can only be interpreted by projecting the row (column) points

onto the direction indicated by any column (row) point.

4. Principal normalization: Plot the row categories as points with coordinates ¢,, i,
and the column categories as points with coordinates ¢,v;,. Here the intrinsic
association terms are spread twice in the solution, once over the row scores and
once over the column scores. This is basically a wrong graphical display since
T+ k # 1. So this method of normalization can only be used for making separate

plots of row categories and column categories, respectively.

In the next Section we will show the models in a longitudinal context, i.e. the situation
where one categorical variable is measured at two time-points (here I = J). Such a table
is called a transition frequency table. In this kind of data the intrinsic association terms
of the RC(M)-association model are often relatively large. Therefore the first two kinds
of graphical displays become problematic, since in the row principal normalization the
column points cluster in the center, and in the column principal normalization the row-

points cluster around the center.



Table 1: Wiepkema Data
follow JK TU HB CHS FL QU LE HDP SK SN CHF FFL

preceed

jk 654 128 172 56 27 25 1 28 0 46 14 18
tu 101 132 62 27 5 1 1 11 0 8 5 9
hb 171 62 197 130 0 25 0 50 14 18 14 12
chs 60 22 152 135 0 8 0 43 16 15 12 4
fl 19 2 0 0 419 19 0 2 0 17 5 11
qu 36 1 18 5 12 789 119 295 26 70 1 14
le 4 0 0 0 0 57 167 73 0 8 0 0
hdp 22 9 40 37 5 245 7 171 287 53 8 13
sk 3 2 7 38 0 120 8§ 134 19 28 4 0
sn 42 2 17 16 20 70 11 67 9 225 12 12
chf 18 3 10 13 6 5 0 8 0 24 97 9
il 27 3 6 5 10 13 0 18 0 10 8 29

In the third Section we will discuss a model proposed by De Rooij and Heiser (2000),
that has a more direct interpretation of the joint graphical display in terms of distances.
The models give a particularly nice representation of longitudinal data: given the mar-
ginal proportions, a large distance corresponds to a small transition frequency; a small
distance corresponds to a large transition frequency. The result can be interpreted as a
transition map, in which people travel from one category point to another. More tran-
sitions occur between categories that are close together; less transitions occur between
categories that are far apart. Before we discuss this model in more detail, we first show an
empirical example, and discuss the problems with the joint graphical displays obtained

from the usual RC(M)-parameterization.

3 THE PROBLEM: AN EXAMPLE

We will discuss the problems noted above in more detail here using an empirical example.
Table 1 gives data of reproductive behavior of male bitterlings, studied by Wiepkema

(1961). The data are derived form 13 sequences using a moving time-window of size



Figure 1: Observed Versus Expected Frequencies For RC(2)-Association
Model With Inheritance Terms.
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two. The 12 categories of behaviors are jerking (jk), turning beats (tu), head butting
(hb), chasing (chs), fleeing (fl), quivering (qu), leading (le), head down posture (hdp),
skimming (sk), snapping (sn), chafing (chf), and finflickering (ffl). We use small letters
for the rows and capitals for the columns.

We analyzed these data with the RC(M)-association model with two components.
The program LEM was used to fit the model (Vermunt, 1997), but other programs can be
used as well. As is usually done with this kind of data, an extra set of parameters (called
‘inheritance’ parameters or ‘immobility’ parameters) is used to equalize the expected
values on the diagonal to their observed counterparts. The fit of this model is X? =
294; LR = 252;df = 69. This is a reasonable fit for such a large table. Compared to the
quasi-independence model, 93.4 percent of the association is accounted for. As can be
seen from Figure 1, the observed values are all well approximated.

The joint plots with row principal and column principal normalization for the RC'(M)-
association model are shown in Figure 2 and 3. As in Table 1 we use small letters for

the row points and capitals for the column points. As can be seen in these two figures,



Figure 2: Row principal normaliza- Figure 3: Column principal normal-
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either the row points or the column points are all clustered in the center, which makes
these plots close to useless for interpretation.

A plot with symmetrical normalization is given in Figure 4. In this plot neither
the row points nor the column points are in a Euclidean metric. The plot can only be
interpreted by projection of the row points onto the vectors of column points or the
other way around. To reiterate, distances between row and column points should not be

interpreted, nor can distances between the row (column) points be interpreted.

4 A REPARAMETRIZATION

Instead of bilinear decomposition we will make use here of unfolding distances. As it will
turn out the model is a reparametrization of the RC(M)-association model. Our joint
graphical display is better interpretable, however.

First, assume a Euclidean distance function on a set of row-coordinates collected in

a I x M-matrix X, and a set of column coordinates collected in a J x M-matrix Y. The



Figure 4: Symmetric Normalization For Wiepkema Data.
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squared distance is defined as
M
2y _ 2
dij(X7 Y)= Z (Tim — Yjm)~ (4)
m=1

Using this squared distance instead of the bilinear part in the RC(M)-association model,

that is, modeling the interaction parameters as
nij = exp (—d3(X;Y)), (5)

we obtain our distance-association model. The transformation (5) is called the Gaussian
transformation and was used by Shepard (1957,1987; Nosofsky, 1985). Explicitely, the

complete model is

Tij = ;5 exp (—dfj(X; Y)) . (6)

Like in the RC'(M) model, when M = 0 the model reduces to the independence model. If
M = M* = min(/, J) — 1, the model becomes the saturated model. In an unfolding plot
the distances between the row points and the column points are genuine distances, and
can be interpreted as such. The distances between the row points (column points) are
not related to observations; they can, however, be interpreted as the distances between
the row-scores of the RC(M)-association model. Row points (column points) that are in

the same position have the same profile.



Let’s go back to the definition of the RC(M)-association model

M
Ty = Oéiﬁj exp (Z ¢mMimij>

m=1

M
= aiﬁj exp <Z 2uimvjm> ) (7)
m=1

1 1
where u;, = \/gfbiuim, and v, = \/ggbiyjm. If we now define a; = oy x exp(XM_ w2 ),

m=1 uim

and b; = 3; x exp(>m_, v2,), we obtain

a;bj exp (Z%Zl 2Ui7n’Uj7n)

eXp(E%:l u?m) X exp(zﬁ/{:l vjzm) ‘

’/T7;j =

By reordering the expressions, we obtain

M M M
2 2
5 = aibj exXp <— Z Uim — Z vjm + Z 2uimvjm>
m=1

m=1 m=1
M
= a;bjexp (— Z (Ui, — vjm)2> , (9)
m=1

which brings us back at our distance-association model. The distance-association model
is a reparametrization of the RC'(M)-association model that allows for a distance inter-
pretation.

For a further comparison, the likelihood function under Poisson sampling for both

models is written
L= E fijlogmi; — E Tij, (10)
ij ij

where f;; are the observed frequencies. Let’s consider the first derivatives of this likelihood
function with respect to the score parameters of the RC(M)-model and the coordinate
parameters of the distance-association model. For the RC(M)-association model the first
derivative with respect to p, is given by

OL

= > _(mij — fig) bmVjm- (11)

J
For the distance-association model the first derivative with respect to x;,, is given by

oL
8xim

= D _(mij = fi) @im — Yjm)- (12)

J
The derivatives are different, and this has the important implication that generally the

estimates are different. Although the expected frequencies for both models are the same



Figure 5: Distance Plot For Wiepkema Data Obtained With Algorithm
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after convergence, the parameter estimates of the distance-association model and the
RC(M)-association model with reparametrization given in (7) to (9) are not the same.
De Rooij and Heiser (2000) proposed this distance-association model and also present an

algorithm to fit the model directly.

5 THE EXAMPLE REVISITED

In Figure 5 the result of the distance-association model is given. Figure 5 is obtained
with the algorithm presented by De Rooij and Heiser (2000).

In Figure 5 distances between row and column points may be interpreted, since the
model is explicitely defined in terms of these distances. A small distance corresponds to
a large value for the association, i.e. a large number of transitions between the two cate-
gories. For example, jerking (jk) is close to turning beats (TU), and head butting (HB),
indicating many transitions occur from jerking to either turning beats and head butting.

A large distance corresponds to a small numerical value for the association, i.e. a small



number of transitions. For example, jerking (jk) is far away from skimming (SK), and
leading (LE), indicating few transitions occur from jerking towards skimming or lead-
ing. A row category on the boundary of the joint graphical display (for example fleeing
(fl)) indicates not many transitions occur from this particular category towards other
categories. A column point on the boundary of the joint graphical display (for example
leading (LE)) indicates not many transitions occur towards this category. Categories in
the center of the joint graphical display are often visited or left.

In the RC(M )-association model one often tries to find categories with equal profiles,
that is the same pattern of frequencies in the corresponding rows or columns of the table.
In the RC(M)-association model such points have the same row- or column-scores. The

same reasoning can be applied to our distance-association model.

6 CONCLUSIONS

In cases where either the intrinsic association terms of the RC(M)-association model
are large or small, the joint plots obtained with the row principal normalization or the
column principal normalization are close to useless for interpretation. The symmetric
normalization has the major drawback that neither the distances between the row points,
nor the distances between the column points are approximations to data related distances.
We think that a joint plot in terms of distances is better understood then a joint plot
based on projections. Therefore, we defined a model in terms of distances explicitely.
We show that the joint graphical display is indeed easily interpreted: A small distance
corresponds to a large association; a large distance corresponds to a small association.
The expected frequencies under the RC(M)-association model and the distance-
association model are equal. The reasons to choose one model above the other can
only be on substantive grounds. We think that whenever one looks for an easy interpre-
tation of the data one should choose for the distance-association models presented here,

because of the more direct interpretation of the results.
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