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1. Introduction

De Rooij and Heiser (2002a; 2002b) show how to use Euclidean distances as model terms
in log-linear models for two-way contingency tables. The advantages of such an approach are
that distance plots are easily interpretable, and instead of having a bunch of numbers all effects
can be shown in a single graph, which is highly attractive. Interaction effects are represented
by common dimensions while the main effects are represented by unique dimensions. Since
squared distances are used, the interpretation is easy since effects of different dimensions are
additive; a proof of which is obtained through the theorem of Pythagoras. Log-linear models are
just one instance of generalized linear models (McCullagh and Nelder, 1989) and here we will
present the distance representation in that broader context. We will only consider categorical
covariates, like in the log-linear model. First we will discuss generalized linear models, then
make a translation to distance models for two covariates. We briefly discuss generalizations to
multiple predictors.

2. Generalized linear models

Let Y be a vector of observations with expectation µ assuming an error distribution from
the exponential family. Often µ or a function of µ is modelled by a linear combination of
covariates given in a matrix X. Generalized linear models can then be written as

g(µ) = η = Xβ,(1)

where the link function g(·) is a monotone differentiable function, for example the identity
function, the log function, or the logit function, and β is the vector with model parameters. In
the current paper we will only deal with categorical covariates, often named factors. With two
factors generalized linear models can be written as

g(µ) = η = m + ai + bj + abij(2)

where the m denotes a constant, ai (i = 1, . . . , I) and bj (j = 1, . . . , J) are main effects for
the variables A with I categories, and B with J categories, respectively, and abij represent the
interaction effect between variables A and B.

Estimation of generalized linear models is performed using a Iteratively Re-weighted Least
Squares algorithm, which converges to the maximum likelihood estimates. In each iteration
the weights and the dependent variable are updated. Afterwards the parameter vector is re-
estimated. For a detailed discussion of the models and estimation procedure see McCullagh
and Nelder (1989).

A problem in generalized linear models with factors is that for the interaction effect abij

the number of parameters is often rather large, i.e. (I− 1)(J − 1), which in designs with multi-
category variables can seriously effect the power. An example can be found in Hays, (1981, p
374) where the anxiety level of respondent in rooms of different size and color were measured
(see Table 1).



Table 1: Anxiety measure dependent on the relation between room size and wall
color.

Room color Red Yellow Green Blue
Room size Small 160 134 104 86

155 139 175 71
170 144 96 112

Medium 175 150 83 110
152 156 89 87
167 159 79 100

Large 180 170 84 105
154 133 86 93
141 128 83 85

An analysis of variance gives an insignificant interaction effect (F (6, 24) = 1.87; p > .05)
but visualization of the data shows that within the green rooms there might be an interaction
(Figure 1). The fact that we have an insignificant interaction is possibly due to the fact
that 6 parameters are needed to model this interaction. If a reduction of this number of
parameters is possible without changing the decomposition of sums of squares too much a
significant interaction can be expected.

Reducing the number of parameters can be performed by using (generalized) biadditive
models (see, for example, Denis and Gower, 1994) that decompose the interaction parameters
by a singular value decomposition. Interpretation of these models is like biplot models (Gabriel,
1971; Gower and Hand, 1996)

In the current paper we will translate the generalized linear model in distance terms, and
through dimension reduction we obtain models with less parameters. We think the distance
parametrization has an intuitively clearer interpretation compared to the biplot interpretation.
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Figure 1: Visualization of anxiety data.



3. Translation to distance models

The interaction parameters can be translated into a squared two-mode distance function,
i.e.

abij = −d2
ij(Z

A; ZB) = −
P∑

p=1

(zA
ip − zB

jp)
2,(3)

where ZA is a matrix with coordinates (zA
ip) for points that represent the categories of variable

A on dimension p, and ZB is a matrix with coordinates of points that represent the categories
of variable B. The dimensionality P is maximally equal to min(I − 1,J − 1), in which case
the representation is exact, that is the predicted values of the distance model are equal to the
predicted values of GLMs with interaction terms. The closer two points of different sets are in
Euclidean space the higher the expected value of the variable of interest (µ).

The new model can be estimated again using Iteratively Re-weighted Least Squares to
obtain maximum likelihood estimates. The two-dimensional solution for the anxiety data is
shown in Figure 2, where uppercase letters (S, M, L) are used for the different sizes of the
rooms, and lower case (r, y, g, b) for different colors. It is clear that the horizontal dimension
determines the major part of the distances, and that some reduction of parameters might be
possible by fitting only the first dimension.
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Figure 2: A distance representation of the interaction.

4. Extension to more factors

Distances represent the relationship between two categories. In a generalization to three
factors, where the generalized linear model is

g(µ) = η = m + ai + bj + ck + abij + acik + bcjk,(4)

each of the three first order interactions could be modelled by a distance, and (4) can be
rewritten as

g(µ) = η = m + ai + bj + ck − d2
ij(Z

A
AB; ZB

AB)− d2
ik(Z

A
AC ; ZC

AC)− d2
jk(Z

B
BC ; ZC

BC).(5)



Coordinate matrices ZA
AB denote the coordinates of variable A in the interaction with B (AB),

and likewise for other coordinate matrices. In (5) we did not model the second order interaction.
By using equality constraints such that the coordinate matrix for variable A is the same in the
interaction AB as in the interaction AC we obtain a triadic distance (De Rooij and Heiser,
2000). Again this shows that triadic distance models do not model the second order interaction
(see also De Rooij, 2002), but that it is a nice way of a simultaneous representation of all first
order interactions.
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RÉSUMÉ

Les modèles linéaires généraux offrent un cadre unificateur commode pour l’analyse des
données multivariables. Cependant, quand les covariables sont qualitatives, le nombre de para-
mètres nécessaires à modeler les effets d’interaction est considérable. Par conséquent, dans
le cas de variables à multiples catégories, la puissance du test est souvent trop diminuée pour
pouvoir trouver un effet d’interaction. Nous montrons comment les termes de distance peuvent
être utilisés dans les modèles linéaires généraux afin de réduire le nombre de paramètres. Cela
a pour effet non seulement une augmentation de la puissance, mais aussi une amélioration
de l’interprétation de la solution. Des extensions pour le cas de plus de deux covariables sont
brièvement traitées.


