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The analysis of discrete dyadic sequential behavior and, in particular, the problem of
forecasting future behavior from current and past behavior in such data is the main theme of
the present article.  We propose to use multivariate multinomial logit models and the potential
of which will be demonstrated with data on Imagery play therapy.  In such a therapy, the
therapist tries to draw a child into Imagery play, so that it can act out its emotions and
feelings which gives the therapist the opportunity to communicate with the child.  As the
therapist wants to interact clinically with the child, it is important to draw it into Imagery
play as soon as possible.  Our aim is to find out how the therapist achieves this by examining
and forecasting new behavior from past behavior.  New behavior can be modeled by special
weighting schemes, but this procedure can be technically problematic.  In this paper the
nature of these problems will be explained and methods to solve them will be proposed.
Moreover, we will explicitly attempt to answer the substantive questions for which the data
were collected through a detailed interpretation of the parameters of the models.

Introduction

In the behavioral sciences one regularly encounters studies in which the
interaction between two subjects (A and B ) is observed over a period of time.
Examples are studies by Harinck and Hellendoorn (1987), who observed a
therapist and a child in Imagery play therapy; by Van de Boom (1988), who
observed the interaction between mother and child; by Benes, Gutkin, and
Kramer (1995), who studied communication processes in school-based
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consultation; by Voeten (1985), who observed a class room, and paid attention
to the interaction between the teacher and his or her pupils, and the studies of
interaction of married couples by, among others, Gottman (1979a, 1979b).

Models for Dyadic Sequential Data

The last two decades have also seen a growing attention to the
development of statistical models for such dyadic sequential data (Allison &
Liker, 1982; Bakeman & Gottman, 1997; Bakeman & Quera, 1995; Budescu,
1984; Gottman, 1979a, 1979b, 1981; Iacobucci & Wasserman, 1987, 1988).
The trend in this series of articles is towards a log-linear approach for the
analysis of sequential dyadic data.  However, as Bakeman and Quera noted:
“But only rarely have researchers with sequential data used log-linear analysis
even though such analyses seem well suited for such data” (p. 273).

The reason for not using standard log-linear models is probably the
difficulty of interpreting the results of such an analysis.  In practice, we see
that the parameters of the log-linear model are not even estimated, but only
the expected frequencies, and interpretation of the results is carried out by
looking at (standardized) residuals from particular models rather than
interpreting the parameters of these models.

The parameters of a log-linear model are difficult to interpret for a number
of reasons.  First of all, there is no underlying empirical scale of the dependent
variable.  Second, the number of parameters that must be interpreted is very
large.  Because of these difficulties, often the parameters of a model are not
even estimated but only the important association effects are determined with
the corresponding expected frequencies, so little can be said about the
direction of association.  In this article the focus will be on the first and third
problem.  The second problem of interpreting many parameters can be handled
by taking a graphical approach using correspondence analysis (e.g.,
Greenacre, 1984) or techniques based on distances (see de Rooij, 2001).

There are basically two alternatives (close to the log-linear model) to
deal with the problem of interpretability.  Budescu (1984) adopted the
weighted least squares approach proposed by Grizzle, Starmer, and Koch
(1969) using an interpretation strategy similar to standard regression analysis
and analysis of variance.  A second approach, which will be discussed in the
present article, is a relatively straightforward reparametrization of the log-
linear model (see Haberman, 1979) that leads to an interpretation in terms of
odds and odds ratios.  The model is often called multinomial response model
or multinomial logit model.  The first and most often encountered description
of the multinomial logit model can be found in Theil (1969, 1970).  Recent
extensions to ordered categorical dependent variables like the cumulative
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logit models or proportional odds models can be found in an influential paper
by McCullagh (1980).  Multinomial logit models can be interpreted by taking
a latent variable perspective (see Long, 1997, chapter 6; Powers & Xie,
2000, chapter 7).  A conditional approach to the multinomial logit model is
described in the Conditional Logit Model, also known as Luce model or
Discrete choice model (McFadden, 1974).  In the Conditional Logit Model
the coefficients for a variable are the same for each outcome, but the values
of the variables differ for each outcome.

We will briefly show how the reparametrization from log-linear towards
multinomial logit models works, then deal extensively with the interpretation
of parameter estimates, and show how we can relate results of the analysis
to concepts as direct and indirect dominance (Allison & Liker, 1982;
Budescu, 1984; Gottman, 1979b).  This reparametrization makes a
distinction between explanatory and response variables, which gives the
model regression features and allows for a forecasting interpretation in
terms of (ratios of) conditional probabilities.  In the section entitled “Results”
we will show an example in which this forecasting mode is important.

Sampling Schemes for Dyadic Sequential Data

For the analysis of two-way square contingency tables that are indexed
by time an important class of models is the mover-stayer models (Hout,
1983).  In these models the diagonal cells and the off-diagonal cells are
treated separately, where the diagonal cells correspond to the stayers, the
off-diagonal to the movers.  Goodman (1968) showed that the mover-stayer
model can be estimated by designating the diagonal cells as having
structurally missing observations, generally referred to as structural
zeroes.  The assumption is that no observations can be recorded in such cells
due to the nature of the design.  By using this device, the analyses only apply
to the off-diagonal elements and are thus specific for the movers.  In dyadic
sequential data we can also distinguish between movers and stayers,
although the design is somewhat more complicated.  Movers can be specified
in terms of the dyad or in terms of one of the actors.  This relates to different
sampling schemes.  First, we deal with the movers and stayers (time-
sampling scheme), then with movers defined on the dyad (event-sampling
scheme), and finally with movers based on one actor (actor-specific event
sampling scheme).  For an extensive discussion of observational schemes
see Bakeman and Gottman (1997, chapter 3).
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Time Sampling

An often used observational scheme in sequential research is time
sampling, that is, the two actors are observed and each t seconds their
behavior is recorded.  When using such a scheme, it is important that the
interval between two consecutive observations is small enough such that all
relevant behavior is captured.  An example of a dyadic series of observations
is given in the upper part of Table 1, where two actors are observed and their
behavior is categorized into four categories, 1, 2, 3, and 4.  The specific
behavioral category 1 of actor A is denoted as a

1
, and at a specific time point,

for example t
-1

, as a
1
-1.  From such a sequence of observations a contingency

table can be formed by using a moving time window.  Therefore, the first
transition from time point 1 to time point 2 (a

1
-1b

1
-1 →  a

1
0b

2
0) is observed and

tallied in the corresponding cell of the contingency table relating the behavior
of both actors at t

-1
 and t

0
.  Then the window is moved one place, and the next

transition (a
1
-1b

2
-1 →  a

1
0b

2
0) is tallied.  This process continues until the last

transition is tallied.

Table 1
An Example of Dyadic Sequential Data with Different Sampling Schemes

Time sampling

A 1 1 1 1 1 1 4 4 4 4 2 2 3 3 3 1 1 1 1 …
B 1 2 2 2 4 4 4 4 1 1 1 2 2 3 3 3 1 4 4 …

Event sampling

A 1 1 1 4 4 2 2 3 3 1 1 1 …
B 1 2 4 4 1 1 2 2 3 3 1 4 …

Actor-specific event sampling

A 1 4 4 2 2 3 3 1 …
B 4 4 1 1 2 2 3 3 …
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Event Sampling

When the interest is mainly on changes of behavior, a disadvantage of the
time-sampling scheme and the way of tallying is that the entries in the contingency
tables corresponding to auto-transitions (for example, a

1
-1b

2
-1 →  a

1
0b

2
0) are

relatively large.  Another observational scheme is event sampling, where
behavior is only recorded when it changes.  Entries of the contingency table
related to auto-transitions are then structurally zero.  However, given a time-
sampling scheme was used to collect the data, and the primary interest is in
changes of behavior, weights can be used during modeling to ignore cells
which do not correspond to changes in behavior.  By attaching zero weights
to these cells, the data acquire the same structure as in event sampling.  In
which case, the first series of Table 1 reduces to the second series.

Actor-Specific Event Sampling

In some research designs, one of the two partners is of specific
interest.  An example is given in detail later, where a therapist and child are
observed during a play-therapy session, and where the main interest is in
the behavior and changes of behavior of the child.  Such a design could be
implemented by introducing a special observational scheme, that is, record
the behavior of both actors when this one actor (the child) makes a change.
For example, on the first two lines in Table 1 the first change of actor A is
a change from category 1 to category 4, that will be the first observation
together with the behavior of actor B that is tallied.  This scheme will be
called actor-specific event sampling.  This can also be obtained by applying
a weighting scheme, where all cells that correspond to auto-transitions of
one actor are given a zero weight.  The sequence of the first two lines of
Table 1 then reduces to the sequence shown in the last two lines in the case
of actor-specific event sampling, where only behavior is tallied that is
within two vertical lines.

Focus of this Article

Kroonenberg and Verbeek (1990) showed that dealing with structural
zeros or zero weights in multinomial logit models is extremely problematic in
most popular statistical packages.  One of the major aims of this article is to
show how the estimation can be done in a correct and natural way.

Summarizing the main methodological focus of the present article:
1.  We propose to use multinomial logit models for the analysis of dyadic

sequential data as they have interpretational advantages over the standard log-
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linear approach.  This advantage will be used to answer substantive questions
related to the data, and the interpretations will be carried out via a detailed
discussion of the parameters of selected models for each of the three sampling
schemes.

2.  We will show that the computational problems in the case of structural
zeros when estimating the parameters of multinomial logit models can be
solved and we will show how valid conclusions can be obtained.

Method

Data and Subjects

The substantive problems guiding our methodological considerations and
modeling originated with Harinck and Hellendoorn (1987) in the context of
Imagery play therapy.  In this kind of therapy a child and a therapist play for
approximately an hour.  The central ingredients of the therapeutic interaction
are the play activities.  The therapist tries to draw the child into so-called
Imagery play, because this kind of play allows for the expression of personal
experiences (Kroonenberg, Hellendoorn, & Harinck, 1988), and thus gives
the therapist a handle to discuss its problems.  By using Imagery play, the
child can express its problems with its parents in a make-believe world,
without having the idea of being disloyal to its parents.

The observational scheme for this kind of therapy is as follows.  A child
and therapist are observed during a therapeutic session of approximately an
hour, and their behaviors are scored every five seconds (time sampling).  The
original scores were coded using 34 categories for both therapist and child.  We
recoded, following Kroonenberg, Hellendoorn, and Harinck (1988), the 34
categories into four major categories, Non play (N), Play preparation (P),
Functional play (F), and Imagery play (I).  For the child the category Non play
consists of activities as talking, giving support, giving attention, and activities
not covered by the other categories.  For the therapist the Non play category
consists for 75% of so-called ‘simple attention’, that is, the therapist watches
the activities of the child.  The purpose of this activity is to give the child the
opportunity to develop its play without the therapist’s inference, and according
to Hellendoorn (personal communication) this is an important element in the
therapy.  Play preparation consists of activities as selection and naming of
material, discussion of its play possibilities, discussion of play subjects, and
arranging things without special meaning.  Functional play covers movement
with play things in the way their properties dictate (roll a ball, ride a car), and
also emphasizes special sensory and esthetic qualities of play.  Finally, Imagery
play consists of activities as creating a play world or a play situation from which
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play things derive their special meaning, playing a story or event, adding a
special feature to the imaginative situation or event, emphasizing the feelings
or emotions of play persons, evaluative comments and interpretive remarks in
play or giving therapeutic messages in play from.

In the sequence of play scores we often see Non play and Play
preparation as initial stages of play.  From these initial stages, play develops
to either Functional play or Imagery play.  Not many transitions occur
between the two latter kinds of play.  They are so-called ‘end-points’ in a
play sequence.  Once in Functional play, a child generally goes back to one
of the initial stages (N or P), before a transition towards Imagery play can
be made (Harinck & Hellendoorn, 1987).  This makes it infeasible to deal
with the categories as an ordered set.  The main question in Harinck and
Hellendoorn’s research was which combination of play of the child and the
therapist will lead to future Imagery play of the child.  In other words, which
categories of child and therapist at t

-1
 (and earlier times) lead to the highest

probability of Imagery play of the child at t
0
.

A total of 117 dyads of therapists and children (48 children in therapy and
69 children not in therapy) were observed, yielding over 70,000 dyadic
scores.  For each dyad a contingency table is made by tallying consecutive
behavior, afterwards all contingency tables are added to obtain one overall
transition frequency table, Table 2.  In doing so, we implicitly assume two
things: First, we assume homogeneity across all dyads; Second, we assume
the behavior at t

0
 can be predicted from the behavior at previous time points

and that this predictability is stable over the whole sequence.  We realize
these assumptions are a severe simplification of the process, but we think it
is in line with the research question, because we would like to find out how
to draw future children (about whom we know nothing in advance) to the
Imagery play mode.  In principle, it is possible that the aggregated results do
not reflect the pattern of any specific child, that is  by pooling all dyads there
exists a danger for Simpson’s paradox.  From a modeling point of view, in
many cases like this one, it is practically impossible to model individual
differences because of the sparseness of the data.  Moreover, it was not our
intention to model differences between children, but we will discuss how this
might be done in the final section.

Unfortunately there were only four therapists.  This makes that their therapy
styles may have influenced the results, and that the data are non-independent.
However, the therapists were equally distributed over the children.  For the non-
therapy children the distribution over the therapists is 18, 16, 18, and 17 (i.e., the
first therapist played with 18 children, the second therapist with 16 children, etc.).
Each of the therapists saw 12 therapy children.  Generally, there exists non-
independence in dyadic sequential data, since the observations in one pair for the
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beginning of a chain and the end of a chain are dependent in the same way.  The
chi-square statistics can be computed, but we should not rely heavily on the p-
values and the theoretical distribution of the statistic.  Still we can use such
statistics as a descriptive device.

Multivariate Regression Models for Contingency Tables

In this section we will discuss a reparametrization of the log-linear model
by distinguishing between explanatory (previous behavior) and response
variables (current behavior), which allows for an interpretation of the
parameters in terms of (log-)odds.  We have used multinomial logit models
for the analysis of dyadic sequential data, as was proposed earlier by, for
instance, Gottman and Roy (1990, chapter 13).  A detailed discussion of
multinomial response models and multinomial logit models can be found in
Agresti (1990, chapter 9), or Haberman (1979, chapter 6).  The therapy data,
however, consist of two response variables, thus in order to model these, we
needed a multivariate multinomial logit model.  Even though the idea of such
models is not new, their use seems to be highly restricted as we could not find
any appropriate references dealing with truly multivariate multinomial logit
models, that is, models which had both more than one dependent variable
which had at the same time more than two categories.  An additional
complication with the present data is that they required modelling in the
presence of structurally zeroes which is far from straightforward in
multivariate multinomial logit models, and poses several computational
problems.  Our discussion of multinomial logit models is based on the log-
linear model, in contrast with the more usual approach where the multinomial
logit model is seen as a generalization of the binary logit model (see, for
instance, Long, 1997, chapter 6; Powers & Xie, 2000, chapter 6).  To
describe the models of interest the following notation is used:  The categories
of behavior for actor A will be denoted by a

k
0 for Lag 0, and a

i
-1 for Lag 1

(i, k = 1, ..., K ).  The categories of behavior for actor B will be denoted by
b

l
0 for Lag 0 and b

j
-1 for Lag 1 (j, l = 1, ..., L ).

Multivariate Multinomial Response Model

A multivariate model for the log of the probability of behavior of both
actors at Lag 0 conditional on their behavior at Lag 1 (alternatively this could
be Lag T, or Lag 1 and Lag 2, etc.) is needed.  Such models are linear in the
predictors.  With all possible effects included (i.e., the saturated case), the
model has the following form
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(1)

0 0 1 1 1 1 0 0 0 0

0 1 0 1

0 1 0 1

0 1 1 0 1 1

0 0 1 0 0 1

|
log

auto-dependence

cross-dependence

interaction-dependence

actor-dependen

k l i j i j k l k l

k i l j

k j l i

k i j l i j

k l i k l j

a b a b a b a b a b

a a b b

a b b a

a a b b a b

a b a a b b

� � � � �

� �

� �

� �

� �

− − − −

− −

− −

− − − −

− −

= + + +
+ +
+ +
+ +
+ +

0 0 1 1

ce

full-dependence
k l i ja b a b

� − −+

.

This is basically the same model as a log-linear model where the
marginals of the explanatory variables are fixed by the �-parameters to
fit their observed values (cf. Fienberg, 1980, p. 95ff.).  We will refer to
this model the multivariate multinomial response model.  If we set

1 1 1 1 1 1
i j i j i ja b a b a b

� � � �− − − − − −+ + + , we get the standard log-linear formulation.  The
following groups of parameters can be distinguished: On the first line
(together with the �-parameter) parameters for the response variables are
given, the next line gives parameters for auto-dependence effects, that is,
an effect of previous behavior of actor A on itself and the same for actor B;
the third line gives cross-dependence effects, the influence of the behavior
of actor B on the behavior of actor A, and vice versa.  The fourth group of
parameters are labeled interaction-dependence, and denote a joint effect
of both actors on one actor.  Actor-dependence denotes the effects of one
actor on the future interaction of the dyad.  The last line is the four-way
effect, that is, the effect of the interaction of the two actors on their future
interaction.

Multivariate Multinomial Logit Model

The log-transformation accomplishes that differences of two log-
probabilities can be understood as the log-odds given the behavior at the
previous time point.  This can be realized directly by using one behavioral
category of both actors as baseline category (a

K
0, b

L
0), against which the

others are contrasted.  The multivariate multinomial response model
described above can then can be written as a multivariate multinomial logit
model:
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(2)
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�
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�
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� − −+

.

for k = 1, ..., K – 1, and l = 1, ..., L – 1, where 0 0 0
k k Ka a a

� � �= − , and
0 1 0 1 0 1
k i k i K ia a a a a a

� � �− − −= − , and similarly for the other �s and �s.  The same groups
of parameters can be distinguished as in the multinomial response model, but
the interpretation of each parameter in model of Equation 2 is in terms of the
odds of a category against the baseline category.  Given the estimates of the
model of Equation 2 we can compute any other log-odds since

0 0 0
1 1 2

0 0 0
2

| | |

| | |

log log log .
K K

a a a

a a a

� � �

� � �

−− −− −−

−− −− −−

     
     = −
          

For a detailed discussion of odds ratios the reader is referred to Rudas
(1998).

Regression Models for Different Sampling Schemes

Time Sampling

With the multivariate multinomial logit model discussed in the previous
section, a model was constructed for the contingency table with all
observations resulting from the time sampling scheme.  As time is the basic
measuring unit, and the behaviors of the therapist and child showed
considerable continuity, this continuity tended to dominate the modeling
effort.  However, the central research question was which behaviors of the
therapist and child lead to Imagery play of the child, which question refers
to change rather than continuity.



M. de Rooij and P. M. Kroonenberg

474 MULTIVARIATE BEHAVIORAL RESEARCH

Event Sampling

As discussed in the introduction, an observational scheme may be
employed in which only changes are observed (event sampling).  In truly
event sampling, the continuity cells of the contingency table are structural
zeros, that is no observations are made for these cells.  When time sampling
has been employed and we are only interested in change, we want to treat
continuity cells in the contingency table as structural zeros.

For event sampling schemes, the same models can be employed as in time
sampling, but only those cells which refer to discontinuity, {S}, are modeled.
The continuity observations are treated as missing or are given a zero weight.
In the latter case, the model is equal to the model of Equation 2, but only for
a predefined set of cells i, j, k, l � {S}, where i and k relate to Lag 1 and Lag
0 behavior of actor A, respectively, and j and l to Lag 1 and Lag 0 behavior
of actor B, respectively.  In terms of weights, we define a set of weights w

ijkl

such that w
ijkl

 = 1, if i, j, k, l � {S}, and w
ijkl

 = 0, if i, j, k, l � {S}.
When the focus is on changes of the dyad (event sampling), the set S

exists of all cells for which (i � k) � (j � l).  The resulting four-way table
for event sampling is equal to Table 2, where the cells on the main diagonal
are given zero weight or replaced by structural zeros.

Actor-Specific Sampling

Another way to specify S is by focusing on changes of one actor (actor-
specific event sampling) irrespective of the behavior of the other actor.  In
that case S consists of all cells for which j � l is true.  The resulting four-
way table for actor-specific event sampling is equal to Table 2 where each
underlined frequency is treated as a structural zero or have been given zero
weights.

Model Selection, Evaluation, and Interpretation

Selection of Predictors

The interest is not in the full model as described in Equation 2 but in
submodels where some effects are constrained to be equal to zero.  In the
case of a four-way table as discussed above, the number of possible models
is already immense, and if one more lag is added a six-way table is obtained
and the number of potential models increases significantly.  However for
dyadic sequential data, some guidelines exist which allow for a relatively
systematic model selection procedure.
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The first guideline is that before cross-dependence effects are fitted,
auto-dependence effects should be included in the model.  The reason is that
cross-dependence effects might be induced by auto-dependence effects
(Bakeman & Quera, 1995).  To really say something about the cross-
dependence effect one should therefore control for auto-dependencies in the
data.  Furthermore only hierarchical models are discussed, since higher-
order effects can only be interpreted in addition to lower-order effects.
Given a model, it is important to determine whether one of the partners is
(in)directly dominant (see the section entitled “Differences Between Sets of
Parameters”) or not.  Both test-statistics to deal with this question and
parameter interpretation will be discussed.

Model Selection

In this section a number of fit statistics that are based on different idea’s
of fit are discussed.  In general we believe that model selection should never
be based on a single statistic.  Model selection is a difficult process and
therefore screening of multiple statistics can be helpful.  We start with the
traditional goodness-of-fit statistics, the likelihood ratio statistic

(3) 2 log ,
ˆ
ijkl

ijkl
ijkl

f
LR f

F
= ∑

where f
ijkl

 is the observed frequency for cell i, j, k, l and îjklF the estimated
cell frequency for the same cell, and the Pearson’s chi-square:

(4)
( )2

2
ˆ

.
ˆ

ijkl ijkl

ijkl

f F
X

F

−
=∑

It is well known that both these statistics are a function of the sample size.
When the number of observations is large these statistics tend to dismiss all
models.  Both statistics are not effect-size measures, but to obtain such
measures X2 or LR could be divided by the number of observations.  An index
which is not dependent on the sample size is the dissimilarity index (Agresti,
1996, p. 162):

(5)
ˆ| |

,
2

ijkl ijklf F
D

N

−
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where N is the sample size.  D can be interpreted as the proportion of
observations which have to be moved to another cell in order for the specific
model to fit the data perfectly, 1 – D is then the proportion correctly
classified.  In prediction or forecasting, this statistic is important in the sense
that it gives an idea about the quality of our forecast.  It can also be used as
a measure of fit, in case a priori a maximum is specified for the proportion
of the observations that has to be moved to obtain a perfect fit.

The likelihood ratio statistic, the Pearson chi-square statistic, and the
dissimilarity index compare the observed frequencies with the expected
frequencies.  Using these statistics the saturated model is always the best
model, since the expected frequencies in that case are equal to the observed
frequencies.  However, saturated models are not really interesting since
such models have the same number of parameters as the number of cells,
that is there is no reduction of information.

A different set of fit indices is obtained by making use of information
theory.  The AIC- and BIC-statistics are resultants from this approach.  These
statistics search for models that fit the data reasonably well with as few
parameters as possible.  Since both statistics behave in a similar way, but the
BIC-statistic gives more weight to parsimony, the BIC-statistic is used.
Raftery (1995) presented a nice and thorough discussion on the derivation and
justification of the BIC-statistic.  The BIC-statistic is defined as

(6) BIC = LR – log(N) × df

where df is the degrees of freedom under the model fitted.  The lower the
BIC-statistic the better the model.  In general, if a BIC-statistic smaller than
zero is found, the model fits comparatively better than the saturated model,
since the BIC-statistic is typically zero for the saturated model.  A model with
a negative value for the BIC-statistic then gives the same amount of
information but using fewer parameters.

In regression analysis and analysis of variance the R2-statistic or the
percentage of variance explained is an important statistic.  For categorical
data, a number of pseudo R2-measures have been proposed.  Wickens (1989,
pp. 127-132) gives a detailed discussion on the derivation of these measures.
Since they all behave in a similar way, only the measure based on
concentration is discussed here, which is defined for a one-dimensional
probability distribution as

( ) 21 .j
j

C � �= −∑
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If all probability falls into a single cell the concentration is zero, and the
concentration is maximized when all categories are equally likely.  For a table
of observations under the product multinomial distribution, the concentration
for a given model for row i is

( ) 2
|ˆ ˆ1 ,i j i

j

C � �= −∑

and the concentration for the whole matrix is defined by a weighted average
of the row concentrations, that is,

( ) ( )ˆ ˆ ,i
i

i

f
C C

f
� �+

++
=∑

where a + in the indices means summation over the index it replaces.  An
R2-measure is obtained by comparing the concentration under a null model

( )0ˆC �  with the concentration of a model of interest ( )ˆC �
�

, in the
following way

(7)
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Wickens (1989, p. 133) stated that models in general reduce the dispersion
by only about 20%.  So, this percentage is about the maximum that can be
expected for our models.

Differences Between Sets of Parameters

Budescu (1984) defined direct dominance as: ‘If under the appropriate
model for predicting the joint behavior of a couple of actors from their past
behavior, B’s future responses are more predictable from A’s past behavior
than conversely, then A is said to be directly dominant.’  In other words, to
answer the question which actor is directly dominant the two sets of cross-
dependence parameters from the model of Equation 2 have to be compared.
Indirect dominance is defined by Budescu as: ‘If under the appropriate
model for predicting the joint behavior of a couple of actors from their past
behavior, the nature of their future interaction is more predictable from A’s
behavior than from B’s behavior, then A is said to be indirect dominant.’ In
other words, to answer the question which actor is indirect dominant the two
sets of actor-dependence parameters from the model of Equation 2 have to
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be compared.  To answer questions about direct dominance and indirect
dominance (cf. Allison & Liker, 1982; Budescu, 1984; Gottman, 1979b), the
strength of two sets of parameters need to be compared.  Provided that a
good fitting multivariate multinomial logit model is found, a test of the strength
of a set of parameters � = (�

1
, ..., �

q
)�, is given by the Wald statistic (Wald,

1943)1

(8) W = ��[cov(�)]-1�,

which has a Chi-square distribution with df = q.  In general, the difference
between two Wald statistics can be tested as follows:  Suppose W

1
 and W

2

are two independent and identically distributed statistics, both chi-square
distributed with q

1
 and q

2
 degrees of freedom respectively, then the ratio

1 1

2 2

/

/

W q

W q

has an F-distribution with q
1
 and q

2
 degrees of freedom (Mood, Graybill, &

Boes, 1974, pp. 246-247).  A problem in our application is that both �2-
statistics come from the same model, and thus they are not independent.
Nevertheless, the F-value can be used as an indication whether there exists
dominance or not: if the numerical value of the ratio exceeds for example 6
(or is smaller that 1/6) it is reasonable to assume that one is larger than the
other.  In our case this would be an indication of dominance.

Interpretation of Parameters

For both dependent variables a baseline category is defined in Equation 2.
The effects can be understood as log-odds of a specific category against the
baseline category.  For example, the �-parameters denote the log-odds of an
observation k against an observation K of actor A.  Thus it is the probability
of an observation k divided by a probability on an observation K.  The �
parameters have the same interpretation in terms of odds, but based on
conditional probabilities.  For example, 0 1

k ia a
� −  gives (on top of the �) the

increase of the odds of an observation k against an observation K for actor

1  The Wald statistic tests the null hypothesis H
0
: � = 0, against the alternative hypothesis

this is not true. Like the Pearson X2 and Likelihood ratio statistic, the Wald statistic is
dependent on the sample size. Since we use the Wald statistic to compare (the strength of)
two sets of parameters from one model on the same data (i.e., the same sample size), this
dependence is of no importance here.
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A, given actor A showed category i at the previous time point, and thus here
the odds are ratios of conditional probabilities.  An interaction effect, for example

0 1 1
k i ja a b

� − − , can only be interpreted together with both main effects 0 1
k ia a

� −  and
0 1
k ja b

� − .  The overall increase of the log odds of an observation k against K are
then given by the sum of these three parameters, that is,

0 1
k ia a

� −  + 0 1
k ja b

� −  + 0 1 1
k i ja a b

� − −

gives the log-odds of behavioral category k against behavioral category K
given actor A was in category i at the previous time point and actor B was
in category j at the previous time point.

Software

In most popular packages for statistical data analysis, it is a problem to
fit multinomial logit models for incomplete tables.  Kroonenberg and Verbeek
(1990) indicated they had great problems specifying the required models in
the then current versions of SAS, BMDP, and SPSS.  In the weighted least
squares procedure of SAS the analysis without weights or structural zeros
can be done without problems.  The analyses including structural zeros or
weights are a problem, however.  As a package geared towards the analysis
described, �EM2 (Vermunt, 1996, 1997a, 1997b) overcomes such problems
and can fit all models of interest. �EM is a program for the analysis of
categorical data.  It is possible to fit a wide range of models such as a variety
of log-linear models, latent class models, correspondence analysis, and event
history models.  �EM is a quite general program, since the user can provide
different kinds of restrictions on the models.  For basic log-linear models and
multinomial logit models the input file consists of a number of commands like
the number of variables, the number of categories per variable, the model one
wants to fit in log-linear notation, and the data.  In Appendix A an annotated
input file is presented that was used for one of our analyses.  For our data
with structural zeros, a weight vector can be specified for the margins which
include cells which are set at missing.  Zero starting values should be given
to parameters concerning these margins.  The other starting values can be
set to any constant (usually 1) not equal to zero.  �EM eliminates parameters
in the correct places.  The computation of the df is not automated yet.  The
output reports the number of cells minus the number of fitted parameters as
the number of degrees of freedom.  However, the reference guide tells us:
‘Generally, we can correct the number of degrees of freedom by subtracting

2 The program can be obtained from: http://www.kub.nl/faculteiten/fsw/organisatie/
departementen/mto/software2.html
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the number of fitted zeros and adding the number of non-identifiable
parameters to the reported number of degrees of freedom’ (Vermunt, 1997b,
p. 75).  This adjustment does provide the correct number, and both are given
in the output.  After adjusting the degrees of freedom, the BIC-statistic
should also be adjusted, since it is based on the unadjusted number of degrees
of freedom.

In event sampling the weights are on level four, that is, the weights are
defined in terms of all four variables.  In actor-specific event sampling the
weights are on level 2, that is, on the level of a two-way interaction of child’s
previous behavior and child’s current behavior.  Consequently, in the first
case (event sampling) it is impossible to define interactions on higher levels
than the level of the weights.  However, in the second case (actor-specific
event sampling) it is possible to define interactions on a higher level than the
weights.  In that case a number of problems occur.  It turns out that standard
errors are not deleted in the right places.  Moreover, the effects do not add
up to zero.  These problems occur because the program uses an internally
defined design matrix.3  It is possible that parameters are not identified.
These problems do not affect the goodness-of-fit statistics (except for the
BIC-statistic and the degrees of freedom, see above, but these values can be
adjusted).  Because these problems do not affect the goodness-of-fit
statistics, first a model can be selected and then the parameter estimation
problems can be dealt with.  After a model is selected, a design matrix should
be defined for the interactions in which the weighted cells occur.  For
example, if the weights are defined on the level of interaction between
variable A and C, and the selected model includes this interaction a design
matrix for this interaction effect should be defined.  If an interaction effect
is specified between A, B, and C a design matrix for this second-order
interaction should be defined as well.  Once the design matrix is specified it
does not really matter whether we use the multinomial response the model
of Equation 1 or multinomial logit the model of Equation 2.  That is, for every
row of our design matrix a parameter is estimated, and from these the
parameters for both models can be derived.  The program only gives
standard errors for the estimated parameters, and not for the parameters
derived from these estimates.

3  A design matrix is used to define a priori contrasts. Design matrices are often dummy
coded like in the regression analysis approach to analysis of variance. Probably the best
known design matrices are contrast matrices in repeated measurement analysis (with for
example Simple contrasts, Repeated contrasts, Difference contrasts, Helmert contrasts,
end Polynomial contrasts).
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Results

In this section the multivariate multinomial logit models will be used to
answer the main research questions about play therapy data.  Thus first the
nature of all continuity and discontinuity transitions together will be examined
and an adequate model for the complete data is derived.  Then the questions
about the relative influence of the therapist and child on the changes in
behavior in the event sampling and actor-specific event sampling is
answered.

Time Sampling

The four-way table of therapist and child’s behavior at Lag 1 and Lag 0
(Table 2) will be analyzed.  The variables at Lag 1 are denoted by A for the
therapist and B for the child, the variables at Lag 0 are denoted C for the
therapist and D for the child.  A and B are the explanatory variables and C
and D the response variables which we want to predict from the previous
time point.

Since the influence of the explanatory variables on the response
variables should be assessed, model [AB][CD] is used as baseline model,
that is, the model of independence between the explanatory and response
variables but saturated within each set.  This is the standard approach in
prediction analysis (see Von Eye, Brandstatter, & Rovine, 1993, 1998).  Also
in multivariate regression models and analysis of variance models the
covariances between the explanatory and response variables are usually
taken into account.  As indicated in the section entitled “Model Selection,
Evaluation, and Interpretation,” only hierarchical models were fitted,
moreover only a cross-dependence term of the therapist on the child was
included if the auto-dependence term of the child was also included in the
model (and vice versa).

Model Selection

The 27 models of interest that were fitted to the four-way table are given
in Table 3.  In all models the interaction between therapist and child at Lag 1
(Variables A and B) and that at Lag 0 (Variables C and D) were present.  The
model with only these two interactions was our base model (Model 1).  All
subsequent models introduce other effects, if a cross-dependence effect
was present, an auto-dependence effect was also included.  Only
hierarchical models are used to be sure that when an interaction is present
also the main effects are in the model.  In Table 3 the models are shown using
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Table 3
Goodness-of-Fit Measures for Models without Weights

Model df X2 LR D BIC R2

1. 225 124222 87914 .4491 85399 .0000
2.[AC][BD] 207 7984 6731 .0981 4418 .1831
3.[AC][BD][AD] 198 6909 6264 .0945 4052 .1828
4.[AC][BD][BC] 198 5815 5390 .0907 3177 .1866
5.[AC][BD][AD][BC] 189 4282 4300 .0878 2188 .1888
6.[ABC] 180 60177 45932 .3217 43920 .0742
7.[ABC][BD] 171 4098 3725 .0692 1814 .1813
8.[ABC][BD][AD] 162 2605 2602 .0604 791 .1828
9.[ABD] 180 29669 22685 .2222 20674 .1280
10.[ABD][AC] 171 5537 4797 .0787 2886 .1833
11.[ABD][AC][BC] 162 2795 2771 .0675 960 .1886
12.[ABC][ABD] 135 1471 1339 .0393 –169 .1843
13.[ACD][BD] 171 5699 4938 .0766 3027 .1758
14.[ACD][BD][BC] 162 3043 2960 .0628 1150 .1815
15.[BCD][AC] 171 4254 3927 .0761 2016 .1858
16.[BCD][AC][AD] 162 2834 2792 .0679 981 .1883
17.[ACD][BCD] 135 1841 1676 .0445 167 .1819
18.[ABC][BCD] 144 3091 2262 .0399 653 .1811
19.[ABD][ACD] 144 4851 3471 .0529 1862 .1773
20.[ABC][ACD][BD] 135 2169 2225 .0588 716 .1810
21.[ABD][BCD][AC] 135 2053 2035 .0577 526 .1885
22.[ABC][BCD][AD] 135 1531 1367 .0373 –140 .1836
23.[ABD][ACD][BC] 135 1865 1740 .0436 231 .1830
24.[ABC][ABD][ACD] 108 1143 1049 .0339 –157 .1828
25.[ABC][ABD][BCD] 108 844 807 .0299 –399 .1846
26.[ABC][ACD][BCD] 108 1151 1044 .0332 –162 .1819
27.[ABD][ACD][BCD] 108 1171 1116 .0334 –343 .1831
28.[ABC][ABD][ACD][BCD] 81 578 562 .0308 –343 .1832

Note.  A and C are therapist behavior at Lag 1 and Lag 0, respectively; B and D are child
behavior at Lag 1 and Lag 0, respectively.
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the usual notation for hierarchical log-linear models.  Screening the fit
statistics we see that no one model fitted the data according to the two
traditional chi-square distributed statistics.  However, there were large
differences in both X2 and LR between the models in the table.  To get
anywhere near reasonable fit statistics, all auto-dependence and cross-
dependence effects are needed.  If at least 95% of the predictions should be
classified correctly, the dissimilarity index (D) points towards Model 12, 17,
18 or 22-28.  For all these models, except 17, 18, and 23, the BIC is negative,
eliminating these three from the list of candidate models.  Finally, models 24-
28 use many more parameters than Models 12 and 22, so that the choice had
to be made between the latter models.

In order to assist model selection, we constructed a graph for the
standardized versions of all our fit statistics (Figure 1) using –R2 because this
statistic is the only goodness-of-fit where the others are badness-of-fit
statistics.  From the figure it can be seen that all fit statistics convey the same
information about the fit of the models.  The most important conclusion from
this figure is that models 1, 6, and 9, fit very badly.  In Figure 2 these models

Figure 1
Standardized Fit Statistics for all Models of Table 3
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are deleted from the graph to get a better view of the fit of the remaining
models.  Moreover, the models are sorted with respect to the degrees of
freedom and model with equal df are ordered according to increasing values
of X2 statistic (models with equal df are between vertical lines).  In Figure 2
we see that the fit increases with increasing df, but that the sizes of the increases
level off at the end.  The fit increase between block (12, 22, 23, 17, 21, 20) and
block (25, 24, 26, 28) is relatively small compared to the fit increase between
the earlier blocks.  Therefore, it seems good to select a model from the
former block.  Again a choice has to be made between Model 12 and 22, but
no clear preference emerges between the two, so that we should look at
parsimony and interpretability.

Although models 12 and 22 have the same number of df, the number of
effects to interpret is much larger in Model 22.  This can be seen from the
description of models in Table 3, where for Model 12 two three-way effects are
given (ABC and ABD) and for Model 22 two three-way effects (ABC and BCD)
plus a two-way effect (AD).  For interpretational parsimony we should
choose for Model 12 instead of Model 22.  In Model 12 we have no actor-

Figure 2
Standardized Fit Statistics for all Models of Table 3 except 1, 6, 9
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dependence effects, only two interaction-dependence effects, which is
nicely symmetric.  In Model 22 we have one actor-dependence effect (the
interaction is dependent on the child’s previous behavior), one interaction-
dependence effect (an effect of the interaction of both actors on the future
behavior of the therapist), and a cross-dependence effect of the child on
previous behavior of the therapist.

We conclude that Model 12 is the best and simplest model of the two.  It has
an interaction-dependence effect on both the therapist and the child, and its BIC-
statistic is negative, indicating a good fit.  Also the R2

C
 statistic is reasonably large,

18.4% of the dispersion is accounted for, where no one model reaches 19%.
The selected model is shown graphically in Figure 3.  There are two

boxes, one for the explanatory variables and one for the response variables.
In each box the margins of the variables are fixed by design (there is an
interaction between the two actors at Lag 0 and Lag 1).  Solid dots represent
the variables, and an open dot represents an interaction point of the lines.
Vectors denote the effects.  In the selected model the interaction between
the therapist and the child has an effect on the behavior of the child and the
interaction between therapist and child has an effect on the therapist.

Similar graphs were proposed earlier by Goodman (1973).  Other graphical
models, which are actually called ‘Graphical Models’, have been researched
intensively (Cox & Wermuth, 1996; Edwards, 1995; Whittaker, 1990).
However, these models do not contain interaction points.  The standard

Figure 3
Selected Model Without Weights
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representation of graphical models is followed, in which the response variables
are on the left-hand side, and the explanatory variables on the right-hand side.

Graphs as presented in Figure 3 are very useful because they represent
rather complex models in a very detailed but easy manner.  These graphs
visualize dependencies between variables, and therefore the interpretation
of obtained results is more straightforward.

Model Interpretation

In Table 4 the results of the analysis with Model 12 are shown.  The columns
pertain to the future behavior, the rows to the past behavior.  The columns give
the log-odds of a specific category against the baseline category Imagery play,
for example in the column N vs. I the log odds of Non play compared to Imagery
play are given.  The left part is for the future child behavior, the right part for the
future therapist behavior.  The rows are ordered using blocks.  The first block
gives the effects of the Child previous behavior on the actors future behavior.
The second block gives the effects of the therapists past behavior on the actors
future behavior, the last four blocks give the effects of the interaction of child and
therapist on the future behavior of each actor.  For reasons of space no standard
errors are presented.  After the description of each effect the Wald statistic for
that effect is given.  This statistic is a description of the total strength of the effect.
Where each parameter together with its standard error shows whether the
parameter is different from zero, the Wald statistic does actually the same but
for a group of parameters. The Wald statistics is used to evaluate the
dominance concepts.  Comparing the cross-dependency effects of child on
therapist (W = 1035, df = 9) and vice versa (W = 1330, df = 9), it can be concluded
that they only differ by a small amount (ratio is 1.28): none of the partners is
directly dominant over the other.  Since the effects of both the child and the
therapist on the future interaction are not in the model, that is, they are equal to
zero, there is no indirect dominance either.

The parameter estimates for the main terms show a strong continuity
effect as the largest entries in the table correspond to repeated behavior.  For
instance, given a child does not play at t

-1
 (C

N
-1), the probability that he will

continue to do so Pr(C
N
0|C

N
-1) versus the probability that he will be involved

in Imagery play at t
0
, Pr(C

I
0 |C

N
-1), is exp(1.542) = 4.70.  In other words, given

Non play at t
-1
 the child is 5 times as likely to continue to do so, as it is to switch

to Imagery play.  After Imagery play at t
-1

 all odds are in favor of Imagery
play again, indicated by the minus signs.  These are the highest values in the
table, that is the strongest effects.  This strong continuity is characteristic of
these data and partly due to the scoring of every five seconds which period
turns out to be shorter than the duration of most behavior.
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Table 4
Parameter Estimates of Selected Model Without Weights

Child Therapist

N vs. I P vs.  I F vs. I N vs. I P vs. I F vs. I

Auto-dependence, W
9 
= 14318 Cross-dependence, W

9 
= 1035

C
-1

Non play 1.542 .539 .287 .472 .548 .391
Play preparation .395 1.585 .374 .310 .499 .084
Functional play .533 .542 2.260 .190 .109 .705
Imagery play –2.470 –2.666 –2.921 –.973 –1.156 –1.179

Cross-dependence, W
9
= 1330 Auto-dependence,W

9 
= 12098

T
-1

Non play .249 .159 .078 .827 .038 –.194
Play preparation .208 .483 .071 .360 1.635 .324
Functional play .492 .339 .914 .205 .256 1.856
Imagery play –.949 –.981 –1.063 –1.392 –1.156 –1.986

W
27

= 1206, Interaction-dependence, W
27 

= 1370

T
-1 

× C
-1

Non play
Non play .669 .225 .321 .551 .233 .280
 Play preparation –.267 –.175 –.229 –.212 .219 .046
Functional play –.042 –.048 .068 –.007 .093 .370
Imagery play –.360 –.003 –.160 –.332 –.545 –.696

Play preparation
Non play .000 .132 –.052 –.072 –.107 .053
Play preparation .097 –.226 –.140 .029 –.306 –.150
Functional play .180 –.004 .292 .173 –.026 .223
Imagery play –.277 .098 –.100 –.130 .442 –.126

Functional play
Non play .083 .325 .553 –.008 .192 –.010
Play preparation .215 .343 .443 .165 .046 .183
Functional play –.031 .115 –.488 .065 .147 –.326
Imagery play –.267 –.783 –.508 –.223 –.384 .153

Imagery play
Non play –.752 –.683 –.822 –.471 –.318 –.322
Play preparation –.045 .059 –.074 .018 .045 –.079
Functional play –.107 –.063 .127 –.232 –.214 –.268
Imagery play .904 .687 .768 .685 .487 .669

Note. Log-odds of .693 indicate the numerator is twice as likely as the denominator
[exp(.693) = 2].  Similarly, 1.099 ⇒ 3×, 1.386 ⇒ 4×, 1.609 ⇒ 5×, and 2.303 ⇒ 10×.
Minus signs reverse the probability: The denominator is more likely than the numerator.
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The behavior of therapist and child at t
-1
 show some interesting interactions

with behavior at t
0
.  In evaluating the size of such interactions, one should

realize that they only provide a contribution to the overall log-odds over and
above the main terms included in the model.  The interaction should therefore
be interpreted as an additional emphasis or de-emphasis of the main terms.

In general, when both child and therapist show Imagery play at t
-1
, the

probability reduces that one of them shows this mode of play again at t
0

compared to the effect of only the two main terms (.90, .69, .77 for Non Play,
Preparatory, and Functional play versus Imagery play of the Child,
respectively; .69, .49, and .67 for the same therapist behaviors at t

0
 ).  This

holds true also for the other categories, except for Non play.  This indicates that
adding the log-odds when both partners are in the same category overstates
the continuity of the joint behavior with respect to Imagery play.  The log-odds
when both partners are in Imagery play at t

-1
 are the largest interactions,

mediating the strong continuity suggested by the main terms alluded to above.
However, given Non play of both partners at t

-1
, the probability that they show

Non play again rather than Imagery play at t
0
 is increased with the log-odds

being larger for the child behavior (.67) than for the therapist behavior (.55).
Thus even though in general the odds are more or less even for any behavior
of the child with respect to Imagery play when the therapist is in Non play (.25,
.16, .08), the log-odds increase towards the other behaviors when in addition
at t

-1
 the child is also not playing (.67, .23, .32).
A final indication that the child follows the therapist comes from the size

of the log-odds when at t
-1

 the therapist shows Imagery play and the child Non
play.  Then the probability is higher at t

0
 that the child also shows Imagery

play as well versus any other category (–.75, –.68, –.82).  Thus at t
0
 the

probability increases that they are in Imagery play together.

Event Sampling

Model Selection

The same models as those in the section entitled “Model Selection” are
analyzed.  Here however in the model the categories on the main diagonal
of Table 2 are weighted by zeros.  The results are shown in Table 5.  Only
the last model with the four-way interaction deleted fits the data when solely
relying on the chi-square distributed statistics and this model explains 12.6%
of the dispersion.  However, the model with only main effects (Model 5)
explains 12.4% of the dispersion, and it has a negative BIC-value, indicating
the model fits relatively better than the saturated model.  The dissimilarity
index for this model has the value .05, so about 5% of the observations have
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Table 5
Goodness-of-Fit Measures for Models with Weights for Event Sampling

Model df X2 LR D BIC R2

1. 209 39865 32876 .3694 30661 .0000
2.[AC][BD] 191 6012 4458 .0993 2434 .1090
3.[AC][BD][AD] 182 4725 3950 .1014 2021 .1119
4.[AC][BD][BC] 182 3440 2988 .0856 1059 .1173
5.[AC][BD][AD][BC] 173 1021 1040 .0515 –793 .1241
6.[ABC] 164 23778 18778 .2645 17040 .0398
7.[ABC][BD] 155 2670 2469 .0805 826 .1218
8.[ABC][BD][AD] 146 734 751 .0412 –796 .1261
9.[ABD] 164 12502 9596 .1689 7858 .0947
10.[ABD][AC] 155 4003 3251 .0850 1608 .1135
11.[ABD][AC][BC] 146 726 733 .0404 –814 .1245
12.[ABC][ABD] 119 513 511 .0318 –749 .1266
13.[ACD][BD] 155 4175 3592 .0976 1949 .1132
14.[ACD][BD][BC] 146 886 899 .0463 –648 .1239
15.[BCD][AC] 155 2768 2425 .0754 782 .1162
16.[BCD][AC][AD] 146 814 816 .0438 –731 .1241
17.[ACD][BCD] 119 709 711 .0397 –549 .1239
18.[ABC][BCD] 128 2040 1610 .0500 253 .1198
19.[ABD][ACD] 128 3433 2544 .0658 1187 .1151
20.[ABC][ACD][BD] 119 555 573 .0344 –687 .1266
21.[ABD][BCD][AC] 119 538 537 .0334 –723 .1255
22.[ABC][BCD][AD] 119 574 571 .0322 –689 .1259
23.[ABD][ACD][BC] 119 546 646 .0380 –614 .1245
24.[ABC][ABD][ACD] 92 339 340 .0227 –634 .1268
25.[ABC][ABD][BCD] 92 303 303 .0229 –671 .1268
26.[ABC][ACD][BCD] 92 387 386 .0246 –588 .1259
27.[ABD][ACD][BCD] 92 446 442 .0298 –532 .1250
28.[ABC][ABD][ACD][BCD] 65 70 70 .0086 –618 .1261

Note.  A and C are therapist behavior at Lag 1 and Lag 0, respectively; B and D are child
behavior at Lag 1 and Lag 0, respectively.
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to be moved to obtain a perfect fit.  From this screening, it can be concluded
that Model 5 is the most parsimonious model that fits the data well enough.

Standardizing our statistics and plotting them gives Figures 4 and, more
detailed (Models 1, 6 and 9 left out), Figure 5.  Especially from Figure 5,
which is ordered from most parsimonious to least, it is clear that Model 5
shows a large increase in fit compared to models with approximately equal
df.  The larger models (i.e. with less df) show hardly an increase in fit in most
statistics (for this series the dissimilarity index seems to be somewhat more
outspoken).  Since Model 5 is much simpler and more parsimonious than
Models 11-28, it is chosen.

A graphical representation of the model is shown in Figure 6.  There are
no interaction points anymore, only direct effects of the therapist to itself and
the child and of the child to the therapist and itself.

Model Interpretation

The parameter estimates of Model 5 are given in Table 6.  Here the Wald
statistic for the influence of the child on the therapist is larger than the Wald

Figure 4
Standardized Fit Statistics for all Models of Table 5
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Figure 6
Selected Model with Weights for (actor-specific) Event Sampling

Figure 5
Standardized Fit Statistics for all Models of Table 5 except 1, 6, 9
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statistic for the influence of the therapist on the child, but again the difference
is relatively small (ratio = 1.47).  So neither the therapist nor the child are
directly or indirectly dominant.

Compared to the time-sampling analysis the interaction-dependence
effects were not needed anymore.  This indicates that the interaction-
dependence effects mainly dealt with the continuity in the data.  In event-
sampling the simultaneous continuity of both actors does not play a role
anymore, and the interaction-dependence effects were not needed to
represent the data.

Similarly to the analysis without weights, the entries corresponding to no
change of behavior are huge compared to the other parameter estimates.  For
example for the child the values corresponding to no change are.94, 1.44, 2.13,
–2.05, –2.29, and –2.55.  Minus signs are found after Imagery play, indicating
that once Imagery play is initiated, it continues.  It should be noted here that
if the child continues to play in one mode, the therapist changes of behavior,
since the cells that relate to no change of the dyad are treated as missing.  All
other behaviors lead to play modes other then Imagery play.  The values after
Non play of the therapist are the smallest, indicating the therapist best shows
Non play or Imagery play to draw the child to Imagery play.

Comparing the auto-dependence effects of child and therapist, the
parameter estimates of the child are somewhat higher in absolute value than

Table 6
Parameter Estimates of Selected Model with Weights for Event Sampling

Child Therapist

N vs. I P vs.  I F vs. I N vs. I P vs. I F vs. I

Auto-dependence, W
9 
= 12428 Cross-dependence, W

9 
= 2919

C
-1

Non play .942 .307 .110 .372 .544 .345
Play preparation .431 1.439 .313 .429 .686 .145
Functional play .674 .549 2.130 .253 .122 .909
Imagery play –2.046 –2.294 –2.552 –1.053 –1.352 –1.399

Cross-dependence, W
9
= 1980 Auto-dependence,W

9 
= 4822

T
-1

Non play .111 .163 .066 .484 .045 –.185
Play preparation .440 .568 .186 .363 1.329 .259
Functional play .433 .361 .906 .247 .294 1.684
Imagery play –.984 –1.092 –1.158 –1.093 –1.668 –1.758
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the parameter estimates for the therapist, indicating the child shows greater
auto-dependence.  The cross-dependence effects for child and therapist
are rather similar, some effects are larger for the influence of the child on
therapist, others are the reverse.  A general pattern is that a particular
behavior by one of the partners is followed by the same behavior of the other
partner, as can been seen from the main diagonals of the subtables.  The main
exception is the influence of Non play of the therapist on the child’s Non play
[Pr(C

N
0 |T

N
-1)] over Imagery play [Pr(C

I
0 |T

N
-1)] which parameter value is .11,

which is low and seems in accordance with the situation that the therapist has
a purpose and wants to achieve something, that is, Imagery play, while the
child does not have such a goal.  Moreover, the Non play category of the
therapist is primarily ‘simple attention’ indicating that the therapist leaves the
initiative with the child.

A further noteworthy pattern is that Non play of the child at t
-1

 enhances
the probability of all other therapist activities with respect to Imagery play
(0.37, 0.54, 0.35), which illustrates that Imagery play generally does not start
at Non play of the child, and that it needs to be introduced via other play
activities.  The reverse is not true, as for the therapist the odds are all much
smaller and almost even (0.11, 0.16, 0.07), which suggests that Non play of
the therapist has less influence on the child’s next activity with respect to
Imagery play.  Note furthermore, that nearly all log-odds, accept those for
Imagery play at t

-1
 are positive indicating that the transitions from any other

activity to Imagery play are infrequent.  However, the log-odds for Imagery
play to Imagery play are the largest in the table, indicating that once it is
established it tends to continue.

Actor-Specific Event Sampling

Model Selection

Again the same series of models is applied.  The goodness-of-fit
statistics are shown in Table 7.  The simplest model with a negative BIC-
value is again the model with all main effects, that is, the model with both
auto-dependence and cross-dependence effects for both therapist and
child, and therefore Figure 6 also displays this model.  The percentage of
dispersion accounted for is low 7.2%, but even the model with all three-way
interactions (Model 30) does not account for more then 7.4%.  The
dissimilarity index is .065 reasonably small.  Also the chi-square statistics
show a large decrease compared to the simpler models and some higher
models.  Figures 7 and 8 give the graphed standardized statistics (in 8, Models
1 and 9 are left out, and the models are ordered with respect to df).  Like in
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Table 7
Goodness-of-Fit Measures for Models with Weights for Actor-Specific
Event Sampling

Model df X2 LR D BIC R2

1. 161 13753 11265 .2977 9664 .0000
2.[AC][BD] 146 4611 3744 .1502 2292 .0472
3.[AC][BD][AD] 137 2679 2367 .1169 1005 .0616
4.[AC][BD][BC] 137 1974 1869 .1050 506 .0591
5.[AC][BD][AD][BC] 128 682 681 .0657 -591 .0724
6.[ABC] 116 1721 1514 .0844 360 .0614
7.[ABC][BD] 111 1646 1456 .0818 352 .0616
8.[ABC][BD][AD] 101 428 433 .0484 -571 .0745
9.[ABD] 132 9364 8161 .2515 6849 .0192
10.[ABD][AC] 123 2528 2232 .1080 1009 .0623
11.[ABD][AC][BC] 113 549 548 .0567 -575 .0733
12.[ABC][ABD] 87 314 315 .0404 -549 .0754
13.[ACD][BD] 111 2555 2135 .1032 1031 .0607
14.[ACD][BD][BC] 102 579 578 .0610 -436 .0715
15.[BCD][AC] 122 1891 1780 .1006 567 .0596
16.[BCD][AC][AD] 114 593 599 .0606 -534 .0729
17.[ACD][BCD] 87 484 487 .0560 -378 .0722
18.[ABC][BCD] 95 1600 1367 .0769 422 .0625
19.[ABD][ACD] 95 2389 2001 .0947 1057 .0614
20.[ABC][ACD][BD] 75 203 207 .0313 -539 .0729
21.[ABD][BCD][AC] 99 507 506 .0548 -478 .0735
22.[ABC][BCD][AD] 86 356 361 .0417 -494 .0749
23.[ABD][ACD][BC] 87 438 442 .0510 -423 .0724
24.[ABC][ABD][ACD] 60 87 89 .0180 -507 .0735
25.[ABC][ABD][BCD] 72 280 280 .0383 -436 .0754
26.[ABC][ACD][BCD] 60 120 121 .0206 -476 .0733
27.[ABD][ACD][BCD] 71 396 394 .0477 -312 .0729
28.[ABC][ABD][ACD][BCD] 17+a 50 52 .0122 -117 .0740

Note.  A and C are therapist behavior at Lag 1 and Lag 0, respectively; B and D are child
behavior at Lag 1 and Lag 0, respectively.
aIf the number of parameters is larger than 150 the program does not give any identification
information.  So for the number of parameters the boundary parameters have to be added
and the BIC statistic has to be changed consequently.
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the event-sampling section, Model 5 is clearly better than comparable-df
models, and the fit statistics have the same size as those of the less
parsimonious models (16 to 28).

Model Interpretation

In the case that the child’s behavior is weighted but not that of the
therapist, an analysis to see which of the partners is dominant is impossible.
So the interest in this analysis can only be in the parameter estimates of the
model given in Table 8.

In this model the diagonal cells for the child are treated as structural
zeros, the parameters referring to these cells do not exist (these are left blank
in Table 8).  The three differences against Imagery play do not tell the whole
story anymore and some other differences are needed to get all the
information.  This is done in the first block of Table 8.  The structure is the

Figure 7
Standardized Fit Statistics for all Models of Table 7
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same as in previous tables, in the rows are the past behaviors in the columns
the future behaviors, again in the form of log-odds.  Again N vs. I denotes
the log-odds of Non play versus Imagery play.  For the other effects, the
differences against Imagery play are still sufficient.  In the first block, the
interest is focused on changes of the child and the parameters are much
smaller compared to the previous analyses.  Moreover, the pattern of
positives and negatives is not so clear anymore.  After Non play of the child
the odds are in favor of Imagery play compared to Play preparation and
Functional play (–.082 and –.049 respectively), although the effects are
small.  After Play preparation of the child, the odds are in favor of both
Imagery play and Functional play compared to Non play, where the effect
of Functional play is somewhat stronger.  Furthermore, after Functional play
the odds are against Imagery play.  After Imagery play the odds are always
against Functional play, supporting the idea that Functional play and Imagery
play are two end points in a play sequence.

Figure 8
Standardized Fit Statistics for all Models of Table 7 except 1, 9
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Table 8
Pameter Estimates of Selected Model with Weights for Actor-Specific
Event Sampling

Child/Therapist

N vs. I P vs.  I F vs. I N vs. F P vs. F F vs. P

Auto-dependence, W
5 
= 41

C
-1

Non play –.082 –.048 –.034
Play preparation –.150 .041 –.191
Functional play .142 .097 .045
Imagery play .124 .095 .030

Cross-dependence, W
9
= 1643

C
-1

Non play .366 .542 .305
Play preparation .494 .764 .247
Functional play .258 .032 1.161
Imagery play –1.117 –1.337 –1.714

Cross-dependence, W
9
= 1175

T
-1

Non play .139 .155 .010
Play preparation .294 .613 -.028
Functional play .504 .484 1.253
Imagery play –.938 –1.251 –1.235

Auto-dependence, W
9
= 3868

T
-1

Non play .522 -.031 -.162
Play preparation .272 1.246 .330
Functional play .216 .365 1.483
Imagery play –1.010 –1.580 –1.651

The other three blocks give the usual pattern of continuity of behavior.
A noteworthy change compared to earlier results is that after Play
preparation of the therapist the odds are in favor of Imagery play compared
to Functional play (–.028).  Although the magnitude of this number is small
it is important that here the sign has changed.  Furthermore, we see again that
the therapist best shows Non play (the odds are about even for the child’s
behavior) or Imagery play (the child follows).
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Discussion

In this article multivariate multinomial logit models were applied to dyadic
sequential data, even though dyadic sequential data analysis most often are
analyzed with log-linear models.  However, the latter approach has a major
drawback, in that the interpretation of the parameters is rather awkward.
Moreover, often only a small number of models are fitted and primarily the
residuals from these models are examined rather than their parameters
themselves.  In our opinion, one should fit models and interpret the parameters
of the well-fitting ones rather than examining and interpreting their residuals.
To examine well-fitting models, one could fit them with weighted least squares
procedures as discussed by Budescu (1984), but this approach is only available
in the program SAS, while log-linear modeling is available in many more
mainstream statistical packages.  The multinomial logit model is a simple
reparametrization of the log-linear model, but one that allows for the more
easily interpreted odds.  However, the use of multinomial logit models with
structural zeros is infeasible in main stream statistical packages.

Handling of Structural Zeros

We showed how the reparametrization is done and how parameter
estimates can be interpreted.  Problems in fitting multivariate multinomial logit
models occur when there are structural zeros or when zero weights are
attached to certain cells of our contingency table.  Such problems were
discussed and a procedure was devised to obtain valid results.  It turned out that
the problems with structural zeros in multinomial logit models are very much
the same as those encountered using the weighted least squares approach to
the analysis of contingency tables (compare Wickens, 1989, chapter 12).  In
either case correct solutions are obtained by specifying a design matrix.

Modeling Individual Differences

Although we treated all dyads together, in principle it is possible to study
individual differences between dyads.  In our study, for example, we have
therapy and non-therapy children.  A variable G could be made which indicates
whether the dyad involves a therapy or non-therapy child.  The basic model to
study is [GAB][GCD] and we can detect whether there are differences
between the therapy and non-therapy group with respect to predicting of future
behavior using essentially the same types of models.  The number of possible
models will increase considerably, but this should not be a argument to neglect
individual differences.  Theoretically, the variable G could refer to each dyad
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separately.  In practice, however, one should realize that a variable G with two
categories doubles the number of cells in the contingency table, and sparseness
of the data becomes a real problem.  When the variable G refers single dyads,
the number of cells would, in our case, have to be multiplied with 117, and the
resulting contingency table would be extremely sparse.  In the application
shown (with only 1 group) the number of cells is 44 = 256.  For each category
of the variable G these 256 cells could be reasonably filled.  Taking into account
that most behavior is continue (i.e. behavior a

i
 is most often followed by a

i
),

the number of observations on a dyad should be very large.

Graphing the Data

In all models presented interpretation of results necessarily involved
comparing many numbers.  An alternative procedure is to analyze the data
using models based on bilinear decompositions of the interaction parameters
such as in correspondence analysis (Greenacre, 1984), or transforming
interaction parameters to distances (De Rooij, 2001).  In these procedures
interactions are represented graphically.  In the first case through
projections, in the second case through distances.  Such graphical
representations can facilitate interpretation enormously, and interpretation
of results can be done looking at a single graphical representation.

Modeling versus Testing Effects

Our approach to the analysis of dyadic sequential data is modeling of the
whole data set, where Budescu (1984) more specifically tested hypotheses
about (indirect) dominance.  In the weighted least squares approach it is also
possible to adopt the modeling approach, but for each model a design matrix
has to be specified.  In our procedure only design matrices have to be
specified in the case of actor-specific event sampling.  Moreover we can
first select a model and afterwards make a design matrix for the selected
model to obtain the correct parameter estimates.  The interpretation of the
weighted least squares approach is in terms of regression coefficients,
where the interpretation of our approach is in terms of log-odds.  Both are
more attractive than the standard log-linear model parameters, but the choice
between regression coefficients and log-odds must be made on personal
grounds.  In his paper Budescu (1984) gave explicit tests for (in)direct
dominance.  We could only give a descriptive way of assessing whether
there exist dominance, since the two Wald statistics are dependent.  In our
examples this descriptive way was strong enough to conclude that neither the
child nor the therapist was (in)directly dominant.  The weighted least squares
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approach is available in the mainstream statistical package SAS, where our
approach can be handled by using the program �EM, which is not part of a
major commercial package, but it is freely available on the internet.

Goodness-of-fit

To select a model we used a number of goodness-of-fit statistics.  If we
look at Tables 3, 5 and 7 and corresponding Figures of z-transformed
statistics (e.g., 1, 2, 4, 5, 7, 8) we see that all statistics point towards the same
models.  There are some small differences, but in general any statistic can
be used to select a model.  Our preference goes to the BIC-statistic since it
has a clear reference point: If the statistic is smaller than zero, the model fits
relatively better than the saturated model.  For forecasting the dissimilarity
index is important, since it gives the proportion of misclassification.

Modeling Other Types of Behavior

In this article we looked at changes of behavior of the dyad or of one of
the actors.  We did not look at the effect of duration of the previous behaviors
on the changes made.  Also in the therapy data duration plays an important role.
As an example, we think of the therapist who keeps on showing Imagery play
till the child follows his or her example.  In that case, it is interesting to know
how long the therapist needs to go on showing Imagery play before the child
follows.  Here the approach of Griffin and Gardner (1989) could be taken.

We often see that one of the actors has a long sequence of the same
behavior, but that he or she for a very short period shows another kind of
behavior and then returns to the same behavior as before.  It would be
interesting to see what would happen if we smoothed the sequence of
behaviors.  This, however, poses several difficulties concerning how to
smooth the sequence of observations and requires a separate paper.

Results of the Three Analyses

The three analyses might be summarized as follows.  In the time-
sampling analysis the results pertain mainly to the stayers in the data.  The
two interaction effects had to be included to downweight the effects of the
main effects.  The second analysis pertains to the movers, that is the stayers
are left out of the analysis and results pertain now to changes of the dyads.
We found that it is difficult for the therapist to draw the child to Imagery play.
The best the therapist can do is play Imagery and hope the child will follow.
Otherwise, the therapist is best involved in Non play, since in that case the
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odds are about even for other kinds of play and Imagery play.  In actor-
specific event sampling the results compared to the event sampling do not
change much, although we see that some nice changes of sign, that is some
odds are in the other direction.  For example, after Play preparation the odds
are in favor of Imagery play against Functional play.
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Appendix
Example of an Input File for � EM

Here we will discus an input file of �EM.  This is the input file for the
selected Model 5 for actor-specific event sampling.  The input file requires
a number of commands, like the number of manifest variables, the number
of categories for each variable, labels for the variables and the model to be
estimated.  The commands are given by 3-character ‘words’, like man for
the number of manifest variables.  Comments can be included after a *.

*input file for the analysis of Hellendoorn and Harincks data
*A = t

-1
, B = c

-1
, C = t

0
, D = c

0

man 4
* There are 4 manifest variables.
dim 4 4 4 4
* The number of categories for the first till fourth variable is 4.
lab A B C D
* The variables are named A B C and D.
mod CD|AB {CD AC AD BC cov(BD,5) wei(ABCD)}
* This line specifies the model.  We have a multinomial response model with
* variables C and D as dependent and A and B as independent variables.  The
* effects included are CD (included in all models), AC, AD, BC and BD for
* which we have to specify a design matrix since the weights are on this level.
* The command cov specifies that a design matrix is given to estimate the
* given interaction, together with the number of rows in the design matrix, 5.
* The design matrix follows after the command des
des
[0 1 -1 0 0 0 0 0 0 0 0 0 0 -1 1 0 *BD
0 0 0 0 1 0 0 -1 -1 0 0 1 0 0 0 0
0 0 0 0 1 0 -1 0 0 0 0 0 -1 0 1 0
0 0 0 0 0 0 0 0 -1 1 0 0 1 -1 0 0
0 0 -1 1 0 0 1 -1 0 0 0 0 0 0 0 0 ]
sta wei(ABCD)
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* Here the weights are specified.  Ones for the observed cells, zeros for the
* structural zeros.

[0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0]
* This line specifies that we use category 4 of variables C and D as baseline
* categories
dum -1 -1 4 4
* Here follow the data.
dat
[0 1019 338 154 0 407 53 14 0 48 83 4 0 91 39 94
877 0 591 475 406 0 201 61 56 0 146 7 152 0 93 262
332 532 0 111 68 147 0 9 70 108 0 9 38 107 0 69
149 357 89 0 34 92 11 0 6 8 12 0 227 357 112 0
0 348 58 21 0 687 74 34 0 41 39 2 0 69 6 38
361 0 212 148 643 0 214 90 39 0 105 5 84 0 57 100
47 147 0 13 77 162 0 12 24 55 0 2 18 25 0 14
8 48 5 0 23 64 5 0 1 1 3 0 15 46 11 0
0 58 57 4 0 60 29 1 0 52 89 2 0 7 12 11
55 0 98 10 30 0 40 3 38 0 147 4 13 0 15 14
98 160 0 19 35 118 0 4 106 168 0 14 19 46 0 28
4 6 5 0 3 2 4 0 3 2 6 0 15 9 8 0
0 182 31 224 0 81 11 22 0 9 20 7 0 201 78 605
149 0 99 298 73 0 19 25 10 0 28 10 209 0 167 484
56 116 0 108 18 47 0 5 10 21 0 3 104 156 0 224
160 270 71 0 39 87 10 0 11 6 24 0 627 569 249 0 ]


