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Summary. We propose a complete distance representation for the quasi-symmetry
model for the analysis of square contingency tables. Complete in the sense that both
interaction and main effects will be represented in a single distance model. Distances
represent a departure from the maximum frequency in the contingency table. The
model is explained in some detail and applied to occupational mobility data. Finally,
it is compared to existing multidimensional scaling models for asymmetric tables.
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1 Square contingency tables

The analysis of square contingency tables often asks for symmetric or close to
symmetric models. Basic loglinear modeling provides two models: the sym-
metry model and the quasi-symmetry model (see Agresti, 1990, Chapter 10).
The quasi-symmetry model can be written as

lOg(FZ‘j) =g —+7r; + Cj + Sigs with Sij = Sjis (1)
where g is a constant, r; a row-effect (i = 1,...,1I), ¢; a column-effect (j =
1,...,1I), s;; the interaction effect which is symmetric, i.e. s;; = sj;, and

F;; is the resulting expected frequency. When we constrain the row- and
column-effects to be the same, i.e. r; = ¢; we obtain the symmetry model.
In the present paper we will discuss a distance representation of the quasi-
symmetry model. First, the interaction effects will be transformed to Euclid-
ean distances; second, the main effects will be rescaled to unique dimensions.
The resulting model has an extremely simple interpretation in terms of dis-
tances: the smaller the distance between two categories the larger the transi-
tion frequency; the larger the distance the smaller the transition frequency.
So, distances give a departure from the maximum frequency in the data.
When we have discussed our model and an application, we will discuss
relationships with other distance models for asymmetric tables. The models
to be discussed are the distance density model by Krumhansl (1978), the
extended Euclidean model by Winsberg and Carroll (1989), the slide-vector
model by Zielman and Heiser (1993), the wind model by Gower (1977), and
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Table 1. Occupational Mobility data (Goodman, 1991)

12 3 4 5 6 7
5019 26 8 18 6 2
16 40 34 18 31 8 3
1235 65 66 123 23 21
11 20 58 110 223 64 32
14 36 114 185 715 258 189
0 6 19 40 179 143 71
0 3 14 32 141 91 106
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models by Okada and Imaizumi (1987), Weeks and Bentler (1982), and Saito
(1991).

Before we discuss modeling we will show a data set here, to be used later
in the application. It is an occupational mobility data set obtained from
Goodman (1991), reproduced in Table 1. Both ways have seven occupational
categories, here simply denoted by the numbers 1 to 7. From these data we
have removed the diagonal, which is often done in the analysis of square
contingency tables. The symmetry model does not fit the data (X2 = 50.6,
G? = 54.0, df = 21), but the quasi-symmetry model provides an adequate fit
(X? =13.1 and G? = 15.6 with df = 15).

2 Distance representation

2.1 Distance representation of the interaction

Multidimensional scaling models have been strongly developed in psychology
and were initially used for the analysis of (dis)similarity judgments. Nowa-
days, these models have a much larger field of application. Scaling models
have the virtue of a simple interpretation, since distances are encountered in
every day life. In the present paper we will deal with the frequencies as simi-
larity measures and so the distances must be a monotone decreasing function
of the frequencies. In the quasi-symmetry model we will transform the inter-
action parameters s;; to distances using the Gaussian transform (Shepard,
1958, p. 249; Nosofsky, 1985, p. 422). The model we will work with is defined
by

log(Fyj) =g+ +c¢j — d?j (X), (2)
where the squared distance is defined as

P

dzzj(X) = Z(mip - xjp)z‘ (3)

p=1

The I x P matrix X contains coordinates, x;,, of the I categories on P
dimensions. If P = I — 1 the number of parameters is the same as in the
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quasi-symmetry model, but of course dimensionality restrictions can be im-
posed. De Rooij and Heiser (submitted paper) coin model (2) the symmetric
distance association model and present an algorithm to approximate observed
frequencies (f;;) with expected frequencies (F;;) using a maximum likelihood
function and assuming a Poisson sampling distribution.

2.2 Distance representation of the row- and column-effects

Besides the interaction, the main effects for rows and columns can also be
transformed such that they can be incorporated in the distance represen-
tation. Therefore, we first make them all negative, i.e. we subtract a value
from the row/column-effects such that the largest equals zero, and add these
values to the constant g, that is

log(Fij) = g + max(r;) + max(c;)
i J
+r; — max(r;)
+c¢; — max(cy)
J

~&(X). (4)

Take the square root of the absolute values of the row parameters and denote
them by u;, i.e. u; = \/ | (r; — max;(r;) |, and analogously for the column
parameters to obtain v;. We can add K unique dimensions for the rows
and L unique dimensions for the columns to our graphical representation by
defining w;, = u; if i = k otherwise u;, = 0, and v;; = v; if j = [ otherwise
v;1 = 0. Our complete distance model can be written as

log(Fy;) = g*
K
=D (ui = ujp)?
k=1
L
= > (va —vp)?
=1

P
- Z(xip - mjp)Q
p=1

=g" —d;(X;U; V), ()

where g* = g+max;(r;)+max;(c;) and denotes the maximum frequency from
which distances are subtracted. Notice that we still have the same expected
frequencies as in model (2), we just changed the identification constraints.
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Fig. 1. Configuration with unique dimensions as circles

2.3 Graphical representation in low dimensionality

A disadvantage of the formulation as it is up to this point, is the huge num-
ber of dimensions. Suppose we have only two dimensions for the interaction,
then our graphical representation has 2 + 2(I — 1) dimensions, and basically
our graphical representation is lost. We can, however, draw the unique con-
tributions in our two-dimensional representation and maintain the distance
interpretation. If we draw circles around each point with radius u;; for the
point being a row category, and a circle with radius vj;; for the point being a
column category, we obtain a novel interpretation of this distance model (see
Figure 1, where only the row circle for category A is shown and the column
circle for category B).

Since the model is defined in squared distances, by repeated use of
Pythagoras theorem we can obtain the complete distance. This is shown
in Figure 2. In the first step, we draw a radius (Bb) orthogonal to line AB
(Left figure) and by Pythagoras we have that the squared length of the line
Ab is equal to AB% + Bb?. Then we repeat this (right figure) and draw the
radius Aa orthogonal on Ab, the square of the length of ab is the complete
distance, i.e. the deviance from the maximum frequency.

2.4 Asymmetry

In our model, each category is represented by one point and two circles,
a circle for the row-effect and a circle for the column effect. The distance
between two points is symmetric, i.e. d;;(X) = d;;(X). However, the complete
distance between the two categories is not symmetric, i.e. d;;(X;U; V) #
d;;(X;U; V). The asymmetry in the data is represented by the radii of the
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Fig. 2. Obtaining the complete distance

circles. See Figure 3 where point A has a dotted circle representing the row-
effect and a solid circle representing the column-effect, for point B the row
and column effect are equal, i.e. the same circle. We obtain complete distances
as discussed above and we see that the complete distance from A to B (from
dotted circle around A to circle around B) is smaller than the complete
distance from B to A (from circle around B to solid circle around A). Since
the expected frequencies are equal to the maximum frequency minus the
complete distance, we have that Fup is larger than Fp4.

2.5 Mass

The radius of the circle is inversely related to the mass of the corresponding
category. So, in Figure 3, the mass of A being a row point (dotted circle) is
larger than for A being a column point (solid circle). The advantage of the
inverse relationship is outlined above, i.e. the advantage is having a distance
representation. The disadvantage is clear and a warning is on its place. A
natural interpretation of the circles in terms of mass is that the larger the
circle the larger the mass. This is not true in the representation given above.

3 Application

Applying our model to the occupational mobility data we find that the two-
dimensional model fits well, X? = 16.0 and G? = 18.5 with df = 18. The fit
hardly decreases but the number of degrees of freedom increases from 15 to 18
compared to the quasi-symmetry model, so the model is more parsimonious.
The graphical representation is given in Figure 4.
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Fig. 3. Asymmetry in the graphical Fig. 4. Solution of occupational Mo-
representation bility data

First, the points lie neatly ordered from 1 till 7. Since this was also found
by Goodman (1991) using the RC(M)-association model, it appears to be
some status ordering, where transitions occur more often between two adja-
cent categories than between categories far apart. The conclusion might be
that going up or down the social status order goes, in general, smoothly step
by step.

The unique contributions are drawn for the rows by dotted circles and
for the columns by solid circles. Category 5 has for both the rows and the
columns no circle, i.e. category five has largest mass by both sons and fathers.
We see that the dotted and solid circles are basically the same, there is few
asymmetry in the data or the masses for fathers and sons are about equal.
For categories 1, 3, and 4 the solid circles are larger than the dotted circles;
For categories 6 and 7 the dotted circles are larger than the solid circles.
Since transitions always go from row (dotted) to column (solid) we have in
general that a transition up the social status ladder occurs more frequently
than a transition down the social ladder. For example, the complete distance
from category 7 to 1 is larger than the complete distance from 1 to 7. So,
the expected transition frequency from 1 to 7 is larger than that from 7 to 1.
This is also true in the observed data.

4 Related distance models

Before comparing our model to related distance models we will first write our
model in matrix terminology. Model 2 can be written as

log(F) = g11' +r1’ + 1¢' — D*(X). (6)
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Table 2. Related distance models and their matrix expression

Model Matrix expression
Distance Density Model ¢(A) =D +wiml’ + wy1lm’
Extended Euclidean Model #(A) =D+ ml’ + 1m’
Slide-Vector Model #(A) = D? +2(Xzl’ — 12'X)

#(A) =D2 +nl’ — 1n’
Wind Model ¢(A)=D+nl’ —1n’
Okada & Imaizumi Model ¢(A)=D —nl’ +1n’
Weeks & Bentler Model  [¢(A) = bD + k(11" —I) + nl’ — 1n’
Saito Model ¢(A)=D+M+nl’ — 1n’

If we define
m=(r+c)/2

n=(r-c/2 (7)
and

M =ml’ + 1m’ 4 ¢g11’
N =nl’—1n/, (8)

then M is symmetric and N is skew-symmetric. The idea to decompose the
parameters of an asymmetric model into a symmetric and a skew-symmetric
part was first fully exploited by Zielman and Heiser (1996).

Model 2 is then:

log(F) = M + N — D*(X). (9)

In multidimensional scaling we often work with dissimilarities to which we
fit distances. The frequencies are similarity measures, and so the negation of
frequencies are dissimilarities up to a constant. We can then write

~log(F) = ¢(A) = D*(X) - M - N, (10)

where of course the sign on M and N is arbitrary.

In Table 2 we give different distance models and their matrix expressions.
The models discussed are Krumhansl’s (1978) distance density model; the
extended Euclidean model by Winsberg and Carroll (1989); the slide-vector
model by Zielman and Heiser (1993); the wind model by Gower (1977); and
models by Okada and Imaizumi (1987), Weeks and Bentler (1982, and Saito
(1991). An important difference is that our model is estimated by maximizing
a likelihood function where all these models are estimated by minimizing a
least squares function. Comparing the models, we see that all models use ei-
ther the vector m as defined above or the vector n to model skew-symmetry.
Only Saito’s model uses both terms. In the distance density model the asym-
metry is defined by two weights, one for the rows and one for the columns.
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The extended Euclidean model is a symmetric model extending the standard
Euclidean part with unique dimensions. The last three models are distance
models for asymmetric tables, where we have a distance part and some de-
parture from the symmetric distance by a skew-symmetric term. Note that in
the slide vector model we have D? denoting that it is a distance matrix with
a constant added to all cells. For a further discussion of these relationships
see Gower (2000).
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