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GRAPHICAL REPRESENTATIONS AND ODDS RATIOS IN A DISTANCE-ASSOCIATION
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Although RC(M)-association models have become a generally useful tool for the analysis of cross-
classified data, the graphical representation resulting from such an analysis can at times be misleading.
The relationships present between row category points and column category points cannot be interpreted
by inter point distances but only through projection. In order to avoid incorrect interpretation by a distance
rule, joint plots should be made that either represent the row categories or the column categories as vectors.
In contrast, the present study proposes models in which the distances between row and column points
can be interpreted directly, with a large (small) distance corresponding to a small (large) value for the
association. The models provide expressions for the odds ratios in terms of distances, which is a feature
that makes the proposed models attractive reparametrizations to the usual RC(M)-parametrization. Com-
parisons to existing data analysis techniques plus an overview of related models and their connections are
also provided.

Key words: Euclidean distances, maximum likelihood estimation, log-linear modelling, multidimensional
scaling, multidimensional unfolding.

1. Introduction

Over the last two decades, a wide variety of models for the analysis of contingency tables
has been proposed, with particularly important developments in log-linear and RC(M)-association
and canonical correlation models (e.g. Goodman, 1972, 1979, 1981, 1985, 1986; Andersen, 1980;
Gilula & Haberman, 1986; Becker, 1990; Haberman, 1974, 1978, 1979, 1995). Restrictions on
the association terms cause these latter models to give intermediaries between a model of com-
plete independence and one that is saturated in the traditional log-linear analysis approach. The
interpretation of these restricted models is often through graphical representations of the row and
column sets.

Two types of graphical representations jointly representing both sets of objects can be dis-
tinguished: Type I plots where the relationship between the two sets is described by a distance
rule, and Type II where this relationship is described by an inner product rule. For Type I plots
the categories for both sets should be represented by points in Euclidean space, with the distance
between the points describing the relationship between categories of the two sets. For Type 11, at
least one set should be drawn using vectors, and the points of the other set projected onto these
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vectors to represent the relationship. Often, inner product models (Type II) are represented by
Type I plots, which are then subject to incorrect interpretations (see, for example, Clogg, Eliason,
& Wahl, 1990, who interpret an inner product representation with distances). The authors believe
that any plot with categories of both sets represented as points in Euclidean space (i.e., a Type 1
plot representation) is intuitively interpreted by a distance rule rather than by projection.

The RC(M)-association model and the canonical correlation model produce graphical rep-
resentations based on inner products, and thus result in Type II plots. In the present paper, we
propose a new model in terms of distances that results in a Type I plot and a distance interpretation
that is arguably more straightforward than the usual RC(M)-association model parametrization.
The topic is related to the difference between Correspondence Analysis (CA; Greenacre, 1984;
Nishisato, 1980; Gifi, 1990) and Multidimensional Scaling (MDS; cf. Borg & Groenen, 1997),
and the Multidimensional Unfolding generalization of the latter to rectangular matrices (MDU;
Heiser, 1981). The CA model uses an inner product rule for the relation between row and column
categories, and therefore is Type II. In MDS and MDU, the relationship between row and column
points is represented by distances and therefore one should use a Type I plot. In CA, only the
distances within the set of row points, or within the set of column points can be interpreted directly
if the proper normalization is chosen (see below). The relationship between the row points and the
column points can only be assessed by projection (cf. Greenacre, 1984, p. 119). A modification of
the CA model proposed by Carroll, Green, and Schaffer (1986, 1987, 1989) to obtain a between
row and column set distance representation leads, as both the original authors and Greenacre
(1989) note, to a curious definition of distances. Moreover, Greenacre (1989) gives convincing
examples of the poor representation of those distances in the resulting graphical representation.
In MDS and MDU, the distances between all points can be interpreted directly and where the
inner product relationship in CA is replaced by a distance rule in MDU. For a detailed discussion
on the relationships among MDS, MDU, and CA, the reader is referred to Heiser and Meulman
(1983).

In the next section, we develop our models first for square contingency tables assuming a
symmetric association pattern, and then for rectangular tables where the assumption of a symmet-
ric association is dropped. The representation of odds ratios in terms of distances is discussed and
a comparison to related models for contingency tables is presented. This section concludes with
remarks on indeterminacies in the model plus a way to identify the models. A third section applies
the models to some empirical data, followed by a section with some summarizing discussion and
an overview of related models and their connections.

2. Distance-Association Models
2.1. Theory

We start with a multiplicative model for the expected frequencies of a K x K frequency
table, with parameters for the margins of o; and 8;, and parameters for the association of 6;;
@i, j =1,..., K). The most general multiplicative form for a two-way cross-classification can
be written as

wij = e Bjb;;, (D

where ;; is the expected frequency of row i and column j, and u is constant.

Goodman (1979) proposed decomposing the association term (6; ;) with a bilinear model, but
we would reparametrize the association term into one involving distances. The frequency for cell
ij is inversely related to the distance between points in Euclidean space representing categories i
and j, so the more often a combination occurs, the more similar the categories are, and the closer
the corresponding categories are in psychological space. To specify the relationships between the
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frequencies in the table and the distances, a monotone decreasing function, ¥, mapping distances
to the association parameters is used:

0ij = ¥(dij), (2)

where d;; is a distance satisfying the metric axioms: symmetry (d;; = d;, for all i and j), mini-
mality (d;; > d;; = 0,foralli and j), and the triangle inequality (d;x +djx > d;;,foralli, j, and
k). In the field of psychophysics, such a transformation was earlier proposed by Shepard (1957;
also see Heiser, 1988; Nosofsky, 1985; Takane & Shibayama, 1986).

Two decisions are required: choice of distance and the form of the transformation function
Y. Distances in psychological space are often assumed to be some Minkowski r-metric,

M 1/r
dij(X) = |:Z |xim _xjm|r:| , =1, 3)
m=1

where x;,, is the coordinate of category i on dimension m (m = 1, ..., M), collected into the
K x M matrix, X. For r = 1, the distance is city-block, and when r = 2, the distance is Euclid-
ean. In psychophysics the two transformations that are generally used are the exponential decay
function

0ij = exp(—d;; (X)), “4)
and the Gaussian function
0;j = exp(—d;;(X)). (5)

It can be shown that for exponential decay, the city-block distance is the canonical distance in that
it results in additivity over dimensions; for the Gaussian transformation it is the Euclidean. As
the Euclidean distance is the more common, we will use it along with a Gaussian transformation
function.

2.2. The One-Mode Distance-Association model

Summarizing, our one-mode distance-association model for a two-way square table has the
form:

wij = pai B exp(—d;; (X)). (6)
After taking the logarithm, (6) can be rewritten as
log(uij) = &+ AR + 2§ — d?(X), )

where A = log u, AI.R = log;, and AJC = log B;. Expanding the distance function
log(uij) = A+ Af + 2§ =" (im — xjm)?,
m

=+ A0 2§ — XA X, (8)

where tr denotes the trace of a matrix, A;; is defined as A;; = (e; —e;)(e; —e j)’, and e; is the i-th
column of the identity matrix of order K. In psychophysics, a conditional version of this model
was proposed by Nosofsky (1985), written in terms of conditional probabilities as

Bj exp(—d}; (X))
>k Brexp(—dA (X))

€))

Tl =
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For a more general discussion on these kind of models for stimulus recognition data we refer
to Takane and Shibayama (1992). If puo; = 1/ Zk B exp(—dl.zk(X)) in (9), the one-mode dis-
tance-association model is generated. Once the model is specified, a likelihood function can be
optimized under an independent Poisson, Multinomial, or Product Multinomial sampling distri-
bution—details are given in the appendices.

2.3. The Two-Mode Distance-Association model

The one-mode distance-association model can be applied only to square tables. For rectan-
gular [ x J tables, two sets of coordinates are needed, one for the row and one for the column
points. The general idea followed comes from the theory of multidimensional unfolding, where
given a rectangular table of proximities between two sets of objects, the objective of MDU is to
find distances in Euclidean space that approximate the proximities as closely as possible (Coombs,
1964). For finding a least squares solution to an unfolding problem, a multidimensional scaling
model can be used in which the input matrix has a special partitioned structure (Heiser, 1981,
1987).

In the one-mode model a single coordinate matrix X was defined for both ways of the
frequency table. However, when the variables differ for the two ways, or when we assume an
asymmetric association pattern two coordinate matrices should be used, one for the first way (X),
and one for the second way (Y). The distance is then defined by

M 1/2
dij(X;Y) = [Z(x,-m - yjmﬁ} : (10)
m=1

Distances between points of one set are not related to observations, but they can be interpreted
like the distances between scores of the RC(M)-association models (see below). The model can
be written in log-linear terms as follows

log(tij) = A+ AF + 2§ — dZ(X; Y),

=2+ 28428 = Crim — yim)™ (11)
m

We will call this the two-mode distance-association model. Takane (1987) proposed the following
conditional probability model

Bj exp(—d;;(X; Y))
> Brexp(—d5 (X; Y))'

called the ideal point discriminant analysis (IPDA). This model will be discussed in more detail
in Section 2.5.2.

12)

Tji =

2.4. The Odds Ratio

As the odds ratio describes the association independently of the marginal proportions, it is
an important tool in the analysis of cross-classified data. In this section, the odds ratio is discussed
under the distance-association model and expressions are given for the odds ratio in terms of dis-
tances. Beginning with the two-mode distance-association model, the relationship w;; = N;;,
where N is the sample size and 77;; is the probability, the odds ratio for rows i and i” and columns
j and j’ can be written as

TTij X Tty

_ 2 on 2 2
v = exp (—df — 2 + % +d3)). (13)
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The log of the odds ratio under the two-mode distance model is a difference between sums of
squared distances. For a square contingency table, the log-odds of staying in the same category
instead of making a transition to another is equal to the sum of squared distances between catego-
ries minus the sum of squared distances within categories. Inserting the definition of the Euclidean
distance, (13) can be written as

M
JTjj X TTir i’
L = exp <22(xim _xi’m)(yjm _yj’m)) s (14)

Tijr X T j el

and is the form found by Goodman (1979). So, the same odds ratio interpretation of the RC(M)-
association model is kept, which for M = 1 was called “attractive” by Gilula & Haberman (1986,
p- 782) because the odds ratio in (14) is a product of “distances”. Note that in (13), dimension-
ality does not play a role and the log-odds ratio can be expressed in terms of genuine distances
regardless of the dimensionality, whereas in (14) the terms multiplied are signed differences.

For a square matrix and the one-mode distance-association model, where x; = y;, the odds
ratio is even simpler. For the odds ratios along the diagonal,

Tii X i _ exp (2d,.2j) . (15)
Tij X Tji

This expression shows the odds of staying or giving the same response (a diagonal cell) in one
category versus making a change or giving another response (an off-diagonal cell). Under the one-
mode model this odds ratio is always larger than one because of the non-negativity of distances,
implying that given the marginal proportions, the probability of staying in a category or giving
the same response is always larger than the probability of moving or giving another response. The
probability of staying in a category for the one-mode distance-association model, corresponds
to a zero distance and the largest probability. This appears to be a common property of square
contingency matrices.

To further clarify the expressions for the log-odds ratio, suppose one variable is measured
twice, and the two categories of the variable are denoted as a and b. The log-odds of staying in
either of the categories versus making a transition is dgl b T dgl a = dgl @~ dgl by» Where dgl by
denotes the squared distance between the point representing category a at the first time point,
and the point representing category b at the second. So the log-odds of staying versus moving
is equal to the sum of squared intercategory distances (dg1 by T dl%laz) minus the sum of squared

intracategory distances (dg1 a T dgl b,)- In accordance with our definition of the model, the larger
the distances between categories a and b, the higher the chance of staying; the larger the distances
between the categories of the same variable (dy,q4,, db,p,) at the first and second time point, the
lower the chance. In the one-mode model, the intracategory distances are (by definition) zero,
and the intercategory distances are equal for a to b or conversely. The log-odds in that case are

simply 2d§b, or twice the squared distance between category a and b.

2.5. Comparison to Related Models for Contingency Tables

In this section we will discuss the relationships of our distance-association models with three
existing models (a unidimensional distance model, IPDA, and the RC(M)-association model) from
a theoretical perspective. For a theoretical and empirical comparison between the RC(M)-asso-
ciation model, IPDA, CA (both least squares and maximum likelihood), and the Latent Budget
Model we refer to Van der Heijden, Mooijaart, and Takane (1994).
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2.5.1. Unidimensional Distance Models

It is necessary at this point to develop a comparison with distance models for contingency
tables proposed by Goodman (1972) and Haberman (1974, Chapter 6); for consistency the log-
linear notation presented by Haberman will be used. The distance model for a square contingency
table proposed by these authors is written as

log(pij) = *+ A + 25 — [ni — nj| + 8ijei, (16)

where §;; is the Kronecker delta, ¢; is a so-called inheritance term to make the diagonal fit the
data, and »; is a scale position for category i. In this model, the difference between the two scale
positions is the distance between the two categories on a one-dimensional scale. It should be noted
that in a single dimension all Minkowski distances are equal, so the city-block distance equals
the Euclidean as well as higher-order Minkowski distances. To enhance comparison, (16) can be
rewritten

log(pij) = &+ A +25 — dij(x) + 8ijei, (17)

where X is now a vector representing the unidimensional scale values. For the estimation of this
model, the order of the scale values has to be specified in advance.

In contrast to the model of Goodman (1972) and Haberman (1974) (G—H model), the current
one-mode distance-association model (OMDA model) can fit multidimensional solutions where
the G-H model can fit only a single dimension; also, the G-H model employs the exponential
decay function and the OMDA model employs the Gaussian transformation, which in the case
of a multidimensional solution makes optimization much simpler; finally, the G-H model has
parameters for the diagonal, and requires a pre-specification of category order while the OMDA
model does not require such an ordering. When it is not possible to specify an order in advance,
it is well known that finding the optimal unidimensional scale is a combinatorial problem (De
Leeuw & Heiser, 1977; Defays, 1978; Hubert & Arabie, 1986). The multidimensional solution
can be extremely helpful when variables with many categories or multivariate transition data are
analyzed. Under these circumstances, it is very hard to fit the data well in only one pre-specified
dimension; the models developed here can be very useful in finding structure.

The special treatment of the diagonal in square contingency tables proposed by Goodman and
Haberman can also be incorporated into the distance association models, with K extra parameters
and the expected frequencies for the diagonal cells fitted to their observed values. The overall fit
measured by the traditional chi-square distributed statistics will in general improve a lot.

2.5.2. Ideal Point Discriminant Analysis
Takane (1987, 1998) proposed the following conditional probability model

Bj exp(—d7 (X; Y))
>k Brexp(—dAi(X; Y))'

and called it an ideal point discriminant analysis (IPDA). Takane does not estimate the Y matrix,
but simply takes Y to be the weighted mean of the X. This simplification does reduce the number
of parameters, but is unnecessarily restrictive. The distance-association model will be expected
to find a somewhat better fit, although the differences might sometimes be negligible. Using the
barycentric location of Y, distances within the rows will be better approximated than distances
within the columns (Greenacre, 1989), consistent with the conditional approach taken. The dis-
tance formulation in IPDA is especially suited for the situation where we have I multinomial

Tjli = (18)
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samples of a variable with J categories, with fixed row margins, and not so much for the situation
of cross-classified data.

Takane (1998) discussed the interpretation of the graphical display, especially the interpre-
tation of the between row and column distances, and concludes they are “rather intricate” and that
“care should be exercised when they are interpreted in probabilistic terms”. To summarize his find-
ings: (1) m;|; is inversely monotonic with d;; within column j, so thatd;; > di; < m;); < 713
(2) m;; is not necessarily inversely monotonic with d;; unless B; is constant across j; (3) 7j; is
inversely monotonic with d;; within i for different columns () only if 8; is constant across j
(Takane, 1998, p. 448).

Two facets are generally of importance in the analysis of contingency tables: the odds ratio
and the joint probability. The representation of the odds ratio with the IPDA model is the same
as with our model, and in the distance association model, the distances are inversely monotonic
related to w;;/pe; Bj. It is the ratio of the frequencies and the expected frequencies under the
independence model that are inversely monotonically related to the distances between points in
Euclidean space. The distance is not necessarily monotonically related to the joint probability
unless «; and B; are constant across i and j. However, as is shown by De Rooij (2001) and
De Rooij and Heiser (2002) the main effects can be included as unique dimensions in the dis-
tance representation. The distance in the resulting graphical representation is then directly related
to the estimated joint probability. Therefore we define a vector r = [r1, 72, ..., 7], 0’]]’ where

r = ‘/MIR — max,-()»f)l,andavectorc =[0},c1,¢c2,...,c7] where ¢; = ,/|)»“/? — maxj(AjC.)|.

Then (11) can be rewritten as

log(pij) = A* = (ri = )% = (ci = ¢;)* = > (Xim — Yjm)’

m

=3 —di (X Yiri0), 19)

where A* = A + max; ()\f ) +max (AJC) relates to the maximum expected frequency in the model.
Thus, the extended distances are monotonically related to the joint probabilities, and the complete
graphical representation is extremely easy to interpret. A graphical representation of this model
will be shown in the second example of Section 3.

2.5.3. The RC(M)-Association Model

The RC(M)-association model is often used to analyze cross-classified data, with results
represented graphically by a Type II plot. The RC(M)-association model is defined as

log(ﬂij) =1+ )VZ'R + )VJC“ + Z G PimVjm- (20)
m

Graphical displays are commonly used to interpret the RC(M)-association model, with two dis-
plays given for the row and column scores. As only indirect relations between the rows and indirect
relations between the columns are displayed, there is no way to really interpret the association.
Only joint graphical displays of the rows and the columns can show how any one category of the
row variable is associated with some category of the column variable.

A number of joint graphical displays can be used that are all of Type II, but as Greenacre
(1984, p. 65) noted:

“There are advantages and disadvantages of the simultaneous display. Clearly an
advantage is the very concise graphical display expressing a number of different fea-
tures of the data in a single picture. The display of each set of points indicates the nature
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of similarities and dispersion within the set. Notice, however, that we should avoid the
danger of interpreting the distances between the points of different sets, since no such
distances have been explicitly defined.”

In general, all plots are mathematically correct with row coordinates ¥} = ¢ ¥, and
column coordinates v;‘m = ¢y, Vjm, Where T 4 k = 1. In practice, one of the following graphical
displays is often found (using the terminology of a major statistical package Meulman, Heiser, &
SPSS Inc., 1999):

Row principal normalization:the row categories are plotted as points with coordinates 9/,
¢m¥Pim, and the column categories as vectors with coordinates v ;. In row principal normaliza-
tion, the Euclidean distances between the row points approximate (possibly weighted) Euclidean
distances between the row entries of the contingency table that are logarithmically transformed
and corrected for the main effects. The column vectors have a direction and a length. The associ-
ation with the row categories is reconstructed by projection, and the length indicates how well a
column fits the chosen dimensionality.

Column principal normalization:the row categories are plotted as vectors with coordinates
¥im and the column categories as points with coordinates v, = ¢,V ;. The interpretation of
this display is analogous to (1), with the role of rows and columns reversed.

Symmetric normalization:the row categories are plotted as vectors with coordinates 9/ =

,1,1/ 2 Uim, and the column categories as vectors with coordinates v;./m = qj,h/ 2y im- This normaliza-
tion spreads the intrinsic association terms symmetrically over the rows and columns. Note that
neither the distances between the row points or between the column points are approximations
to data-related distances. This plot can only be interpreted by projecting the row (column) points
onto the direction indicated by any column (row) point.

Principal normalization:the row categories are plotted as points with coordinates ¢y, ¥;;, and
the column categories as points with coordinates ¢,, v j,,. Here, the intrinsic association terms are
spread twice in the solution, once over the row scores and once over the column scores. This is
basically an incorrect graphical display since T + k 7% 1. This method of normalization can only
be used for making separate plots of row categories and column categories, respectively.

Comparing the mathematical structure of the RC(M)-association model with that of the
two-mode distance-association model, they produce the same expected frequencies. The RC(M)-
association model is defined in (20). Denoting u;,;, = /(1/2)@}, Vim, and v = /(1/2)@p,Vjm,
with T 4+ k¥ = 1, we obtain

log(uij) = 2+ AF + 25+ 2uimvjm, @1
m
and defining A®* = AR + 3 u?  and )L]C* = )\;:* +> . v?m, (21) becomes
log(uij) = 2+ A = up, + 25 = 03+ > 2uimvjm. (22)
m m m

By reordering the expressions, we obtain

log(uij) = A+ AR +25% = @, + v3, — 2imvjm)
m
= A+ 28 25 = i — vjm)? 23)
m

which is the two-mode distance-association model in (11). Note that the row and column scores
only changed by a factor /1/2, so a distance interpretation of the RC(M)-association model is
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FIGURE 1.
Comparison of RC(M)-association model with distance-association model, 1.

provided. The most important changes are in the main effect parameters, which are often named
unique components in distance models (Winsberg & Carroll, 1989).

To make a further comparison between the RC(M)-association model and the distance-asso-
ciation model in terms of the spatial representation and the interpretation, Figure 1 shows a plot in
which one row category, a1, and two column categories, B1 and B2 are shown. Suppose the plot
is a Type II plot (RC(M)-association model), where the symmetric normalization is chosen for
the joint plot. The association of al with B1 is given by the length of vector B1 times the length
of vector al, times the cosine of the angle between the two vectors. All points on the dotted line
have the same value for the association as between al and B1. All points on the lower left side
of this line have a smaller association, and all points on the higher right side have a larger value.
Point B2 is on the higher right side of the dotted line, so the association of al with B2 is larger.

Suppose the plot is a Type I (distance-association model), and all points on the circle have
the same value for the association with al as B1 has. Points outside the circle have a smaller
value for the association; within the circle they have a higher value than al has with B1. In
the distance-association model the association between al and B2 is smaller than between al
and B1. The conclusions derived from both spatial models are contradictory; those from the
distance-association model are intuitively clearer.

A second comparison given in Figure 2 has two row points al and a2 and one column point
B1.In aType II plot (RC(M)-association model), the projection of B1 on the vector of al or a2 is
the same, and the association between the row and column points is now determined by the length
of the vector. As the length of vector a2 is larger than the length of vector a1, the association of
B1 with a2 is larger. In a Type I interpretation, the distance from a1 to B1 is smaller indicating a
larger association. Whether a plot is of Type I or II makes a significant difference, and therefore it
is important to clearly distinguish between the two. A Type I plot can and should be made using
only points in multidimensional space, whereas a Type II plot should be drawn making use of
vectors for at least one set.

We showed that RC(M)-association models also have a distance interpretation. The graphical
display of the RC(M)-association model can be interpreted both by a inner product rule and by
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FIGURE 2.
Comparison of RC(M)-association model with distance-association model, 2.

a distance rule. Where the inner product parametrization can best be seen in terms of main and
interaction effects, the distance parametrization can best be seen in terms of common and unique
contributions, as discussed in Section 2.5.2. The two types of plot are integrated and the user can
choose whichever type he prefers.

2.6. Indeterminacies in Model Values, in Distances, and the Degrees of Freedom

The distance-association model has different sets of parameters: i.e. a constant, main effects
and coordinates for the row and the column categories. Together they form the expected frequen-
cies. This section studies the number of indeterminacies in this model. Three levels of indetermi-
nacies are considered: (1) The level of expected frequencies; (2) The level of main effects plus
interaction effects; (3) The level of interaction effects.

2.6.1. Indeterminacies in Model Values (Expected Frequencies)

The distance formulation shown in (11) is not the most simple formulation to assess the
indeterminacies in the model. Therefore, the model is rewritten to get more insight into the inde-
terminacies

log(pij) = A+ Af + 2§ — dZ (X Y)

= )»—i—)\lR* —i—)»]C* —i—ZZx,'myjm
m

where AR* = A F — 3" x2 and 1¢* = )»]C — Yo yjz.m.

This form is well known and the following indeterminacies can be identified: The usual
centering indeterminacy in the main effects; in X and Y there are indeterminacies for the loca-
tion, which amounts to 2M indeterminacies; and both X and Y might be linearly transformed,
which amounts to M? indeterminacies. Altogether these are M (M + 2) indeterminacies in the
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association, and for each main effect one. These can be solved in several ways (see below) but
these do not leave the distances invariant although the model values are invariant and all solutions
are equally valid.

2.6.2. Indeterminacies in Extended Distances

As shown in Section 2.5.2, the model can also be written as a extended distance model with
a unique dimension for the row categories and a unique dimension for the column categories

log(uij) = A — d;(X; Y: ri 0).

The number of dimensions in the extended distance model is M + 2, so the number of parameters
is (I +J) x (M + 2) of which (I + J) are constrained to be equal to zero. This solution can
be rotated and translated without changing the distances. The dimensionality is M + 2, so the
number of indeterminacies is [(M +2 + 1) x (M 4+ 2)]/2 = (M? +5M + 6)/2. At this level,
we keep the A constant and the distances are invariant, but the coordinates are not unique. Also
notice that by rotation of the solution the unique row and column coordinates do not have the
same pattern of zeros anymore.

2.6.3. Indeterminacies in Association Distances

Now indeterminacies in the association distances (defined by X and Y) are studied, for fixed
position of A, r, and ¢. These distances remain invariant under translation, rotation, and reflection
of a solution, which amounts to M x (M + 1)/2 indeterminacies.

2.6.4. Identification and Degrees of Freedom

Once the algorithm has found a solution we have [i; s Ay Af s )‘/C’ X, Y, and possibly ¢;.
As shown in Section 2.6.1, indeterminacies are present in the parameter estimates. An identified
solution might be obtained by writing all parameters as a function of singular values and singular
vectors as follows. First determine G;; = log(,&ij) fori # j and Gj; = log(ft;;) — €; for the
diagonal of square matrices.! To obtain identified parameters first define A = ﬁ > i Gij»
XZR = %Zl Gij — X, X]C = %Zl Gij — X, and 8ij =Gij — X — ):iR — ):]C Define the matrix A
with elements A = {§;;}. Let the singular value decomposition of A be given by USV’. Identified
parameters are obtained by

1
V2
1
V2

X = US?

Y = VS,

witht +« =1 and

2
dyi = inm
m
_ 2
dyj =) Vin
m

!Note that in case no parameters for the diagonal are fitted ¢; = 0, Vi.
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Since the singular value decomposition is unique, and is characterized by M (M + 2) constraints,
we have resolved the indeterminacies of the model. Through this set of constraints the difference
between the graphical displays of the RC(M) and distance-association model is just a scaling
factor. The plot can thus be interpreted by both a distance rule and an inner product rule. The
degrees of freedom areequalto(/ x J) -1 - -1) - -D—-U+I)M+MM+2)=
I-1-M)J—-1—-M).

For the one-mode distance-association model things are less complicated. For every dimen-
sion K parameters need estimation, with one parameter for each dimension saved from centering
the solution, and M (M — 1)/2 parameters saved for rotational freedom. For a M-dimensional
model, the degrees of freedom are reduced with (K — 1) x M — [M(M — 1)/2] compared to
the independence model, with the degrees of freedom then equaling to (K — 1)? — (K — )M +
[M(M — 1)/2]. The maximum number of dimensions that can be fitted is equal to K — 1, pro-
viding the model closest to the quasi-symmetry model of Caussinus (1965) assuming that the
association parameters satisfy the metric axioms and are Euclidean. Under these conditions, K
points can be fit perfectly in K — 1 dimensions.

3. Data Analysis

The distance-association models will be applied to the data described in Tables 1, 2, and 3.
Table 1 concerns reproductive behavior of male bitterlings, studied by Wiepkema (1961), with
data derived from 13 sequences using a moving time-window of size two. The behaviors are
jerking (jk), turning beats (tu), head butting (hb), chasing (chs), fleeing (fl), quivering (qu), lead-
ing (le), head down posture (hdp), skimming (sk), snapping (sn), chafing (chf), and finflickering
(ffl). These data were analyzed by Van der Heijden (1987) using correspondence analysis. This
data will be used to show both the one- and two-mode distance-association models for square
contingency tables.

Table 2 is from Srole, Langner, Michael, Opler, and Rennie (1962) and gives a cross-clas-
sification of subjects according to their mental health status and parents’ socio-economic status.
Mental health has four categories: (a) well; (b) mild symptom formation; (c) moderate symptom
formation; and (d) impaired. There are six categories of socio-economic status. These data have
been analyzed by Goodman (1979) using the RC(1)-association model. This data will be used to
show the extended distance model, as discussed in Section 2.5.2.

Table 3 gives a cross-classification of eye and hair color for 5,387 children from Caithness,
Scotland, and has been analyzed previously by Goodman (1981) and Becker and Clogg (1989).
Eye color has four categories: blue, light, medium, and dark; hair color has five categories: fair,
red, medium, dark, and black. This data set will be used to discuss the representation of odds
ratios by distances as discussed in Section 2.4. For all analysis t and « will be set to 1/2.
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TABLE 1.
Cross-classification of reproductive behavior of the male bitterling of # — 1 versus ¢
follow preceed jk tu hb  chs fl qu le hdp sk sn chf ffl
jk 654 128 172 56 27 25 1 28 0 46 14 18
tu 101 132 62 27 5 1 1 11 0 8 5 9
hb 171 62 197 130 0 25 0 50 14 18 14 12
chs 60 22 152 135 0 8 0 43 16 15 12 4
fl 19 2 0 0 419 19 0 2 0 17 5 11
qu 36 1 18 5 12 789 119 295 26 70 1 14
le 4 0 0 0 0 57 167 73 0 8 0 0
hdp 22 9 40 37 5 245 7 171 287 53 8 13
sk 3 2 7 38 0 120 8 134 19 28 4 0
sn 42 2 17 16 20 70 11 67 9 225 12 12
chf 18 3 10 13 6 5 0 8 0 24 97 9
ffl 27 3 6 5 10 13 0 18 0 10 8 29

Note: jk = jerking, tu = turning beats, hb = head butting, chs = chasing, fl = fleeing, qu = quiver-
ing, le =leading, hdp = head down posture, sk = skimming, sn = snapping, chf = chafing, ffl=
finflickering.

TABLE 2.
Cross-classification of subjects according to their mental health and their parents’ socioeconomic status

1 2 3 4 5 6

Well (a) 64 57 57 72 36 21
Mild (b) 94 94 105 141 97 71
Moderate (c) | 58 54 65 77 54 54
Impaired (d) | 46 40 60 94 78 71

TABLE 3.
Cross-classification of eye color by hair color

Fair Red Medium Dark Black
Blue 326 38 241 110 3
Light 688 116 584 188 4
Medium | 343 84 909 412 26
Dark 98 48 403 681 85

Comparisons of models will be made through both the chi-square statistic

L 1:)2
X2:Z(flj A ,le]) ’ (24)
ij i j
where [;; denotes the maximum likelihood estimate of the expected frequency, and the Likelihood
Ratio statistic

[

EAA (25)
Mij

LR=2)" fijlog

ij

The Likelihood Ratio statistic can be used to compare two nested models, and under the inde-
pendence model gives a measure for the total amount of association in a table. Given a distance
model in M-dimensions (D(M)), define the percentage association accounted for (%AAF) as
(Goodman, 1971)
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TABLEA4.

Results of the analysis of bitterling data (Table 2)
Model Measure 1D 2D 3D
Symmetric X 8771 7110 1627

LR 4528 2075 975
df 110 100 91
Asymmetric X? 39608 3510 487
LR 3200 1061 410
df 100 81 64
Symmetric + X2 1169 463 349
inheritance LR 1114 465 373
df 98 88 79
Asymmetric + X2 1112 294 109
inheritance LR 1101 252 117
df 88 69 52
LR; — LR
BAAF = 100 x —1 D) (26)

LR,

where LR/ is the Likelihood Ratio statistic under the Independence Model, and LR p(ss) under
a distance model in M dimensions. In the formula above, a distance model is compared to the
independence model, but we could use the same formula to compare any two nested models (e.g.,
one model in two dimensions and another in three dimensions to obtain a measure of association
accounted for by the third dimension). The %AAF is especially useful in large contingency tables
where the traditional chi-squared distributed statistics tend to dismiss all models except the one
that is saturated because of the sample size. The %AAF then gives a relative measure of how
much information is explained by a model compared to another.

3.1. Analysis of Table 1

The independence model strongly deviates from the data (X> = 16985, LR = 10485,
df = 121); the quasi-independence model (i.e., the independence model plus parameters to fit the
diagonal of a square table) fits the data much better as 77% of the association is accounted for,
but still fits badly (X2 = 4156, LR = 3825, df = 109). Table 4 gives goodness of fit statistics for
the distance-association models in 1D to 3D.

3.1.1. The One-Mode Distance-Association Model With and Without Inheritance Terms

Although none of the models fits the data using the chi-square statistics, all give a high value
for the %AAF. Compared to the independence model, the one-dimensional model accounts for
73% of the association, the two-dimensional 88%, and the three-dimensional 94%.

The one-mode distance-association models with inheritance terms account for 89, 97, and
98% of the association in one to three dimensions, respectively. Compared to quasi-independence,
71% of the association is accounted for by the one-dimensional model. The increase in %AAF for
the two-dimensional model is reasonably large, and in two dimensions the one-mode distance-
association model accounts for 88% of the association not accounted for by the quasi-indepen-
dence model. The %AAF for the three-dimensional model compared to quasi-independence is
90%, not much better than two dimensions.

In Figure 3, fleeing is on the boundary of the solution, indicating not many transitions occur
to or from this category. Two close groups can be distinguished, with one of chasing, head butting,
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FIGURE 3.
The configuration for the two-dimensional one-mode distance-association model with inheritance terms for the bitterling
data. For abbreviations, see the text.

jerking, turning beats, and finflickering; and another group of skimming, snapping, head down
posture, quivering and leading. Many transitions occur within these two groups. The horizontal
dimension contrasts fleeing from the other categories. The vertical dimension might be interpreted
as aggressive versus sexual behavior: turning beats, jerking, head butting and chasing represent
aggressive behavior, whereas leading, quivering, skimming and head down posture represent
sexual behavior. Wiepkema (1961) used factor analysis on Spearman rank correlations for the
analyses (see Van der Heijden, 1987), and found three factors of sexual, aggressive, and non-
reproductive behavior (consisting of the categories fleeing, finflickering, chafing, and snapping).
Using correspondence analyses Van der Heijden (1987) found four dimensions, of which the first
two lead to conclusions very similar to ours.

3.1.2. The Two-Mode Distance-Association Model With and Without Inheritance Terms

The two-mode distance-association models without parameters for the diagonal cells account
for 81, 94, and 98% of the association in the data in one to three dimensions, respectively. With
inheritance terms, these values go up to 94, 99 and 99%. Compared to quasi-independence, they
account for 71% (one dimension), 93% (two dimensions), and 97% (three dimensions) of the
association not accounted for by the quasi-independence model.

Although the two-mode models in two and three dimensions plus inheritance terms do not fit
the data in terms of the model test, they account for 99% of the association in the table. Compare
Figure 4, where the observed frequencies (horizontally) are plotted against the fitted frequencies
(vertical dimension) for the two-mode distance-association model in two dimensions plus inheri-
tance terms. Overall, the points are close to a straight line (left-hand-side plot) representing perfect
fit, although in the smaller frequencies there are reasonable discrepancies between observed and
fitted frequencies (right-hand-side plot). For tables with large frequencies the chi-square distrib-
uted statistics tend to dismiss all models except one that is saturated; in contrast to the use of
chi-square statistics, the %AAF is to be preferred as a measure of fit.
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Observed versus expected frequencies for two-dimensional two-mode distance-association model with inheritance terms.
The left-hand-side plot shows all frequencies; The right-hand-side plot shows a detailed look at the smaller frequencies.

The two-dimensional two-mode distance-association model plus inheritance term seems to
fit the data very well. The solution is given by Figure 5, where small letters correspond to points
for the first time (rows) and capitals to points for the second time (columns). The configuration
is very much the same as the one-mode configuration in Figure 5 except that some important
asymmetries are now apparent. For example, the distance from leading (le) at the first time point
to skimming (SK) at the second is much smaller than the distance from skimming at the first time
(sk) to leading at the second (LE). Other similar conclusions can be drawn from this representation
(compare head butting/ chasing or snapping/ fleeing).

2 -
F
15} h
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1 -
FFL
0.5+ SN
JK CHF Qu o
U ffl HDP
ol chf sn qu
jk
tu HB
o5h CHS
hdp
1l hb
chs sksk
-15}

) . . . . . . . ,

2 15 A -0.5 0 0.5 1 1.5 2

FIGURE 5.

The configuration for the two-dimensional two-mode distance-association model plus inheritance terms. Small letters
correspond to the categories at r — 1; Capitals correspond to the categories at ¢. For abbreviations, see the text.
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FIGURE 6.
Distance-association model with main effects represented as a row and column dimension.

3.2. Analysis of Table 2

The Srole data have been analyzed by Goodman (1979) and Haberman (1974, 1979). The
one-dimensional distance-association model fits the data well (X2 = 3.57 and LR = 3.57 with
df = 8). Figure 6 presents the extended distance model representation as discussed in Section
2.5.2. One dimension pertains to the row points and one to the column points, both representing
the unique contributions of the categories, the third dimension is a common dimension pertaining
to the association. The squared distances in three-dimensional space approximate the frequencies
in a monotone decreasing manner, where the larger the distance, the smaller the frequency, and
the distance represents the departure from the maximum frequency (for categories b and 4). The
marginal frequencies are represented in a row and a column dimension, where the closer the point
to the origin, the higher the marginal frequency. Through the use of squared Euclidean distances
the unique and common dimensions are additive: The squared distance from a row point, say a, to
a column point, say 6, equals the squared distance on the row dimension from zero to point a plus
the squared distance on the column dimension from zero to point 6 plus the squared distance on
the common dimension from a to 6. This representation is only possible for the one-dimensional
distance-association model, otherwise two dimensions are needed for the association and the total
configuration will be four-dimensional.

3.3. Analysis of Table 3

This cross-classification was analyzed with the RC(M)-association model in two dimensions
by Becker and Clogg (1989), and here we show the graphical representation of the distance-asso-
ciation model. The model fits the data well, with X2 = 5.29 and LR = 5.41 on two degrees of
freedom. Figure 7 displays the fitted points in a joint plot, where capital letters denote hair color,
and standard letters represent eye color.
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FIGURE 7.
The graphical representation obtained with distance-association model for the eye-hair color cross-classification. Included
is the representation of log-odds ratios by sums of positive (solid lines) and negative (dotted lines) coded distances.

Figure 7 is used to discuss the odds ratio under the model. As Section 2.4 indicated the
log-odds ratio is expressed as a sum of positive and negative squared distances. Beginning with
the odds ratio of the four cells with light versus dark eye color, and Fair versus Black hair color,
the log-odds ratio is equal to

d?(light, Black) + d?(dark, Fair) — d?(light, Fair) — d?(dark, Black), 27

where the first two terms are represented as solid lines in Figure 7 and the latter two as dotted lines.
The log-odds ratio is clearly positive, so people with light eyes tend to have fair hair more often,
compared to people with dark eyes, who have black hair more often. We do not immediately get a
value From the graphical representation, but since the solid lines are much longer than the dotted,
this odds ratio will be large, and larger than the odds ratio for the cells corresponding to medium
versus dark eye color and medium versus dark hair color. This log-odds ratio is also represented
in Figure 7 again by solid (coded positive in the odds ratio) and dotted lines (coded negative in
the odds ratio) that have to be added. The positive parts are still larger compared to the negative
parts so the log-odds ratio will be positive, but the relationship is not as strong compared to the
odds ratio of light and dark eyes, and fair and black hair color.

4. Discussion

Distance-association models were developed in this paper for the analysis of contingency
tables that can fit multidimensional solutions; the distance models proposed by Goodman (1972)
and Haberman (1974) can only handle unidimensional distances with some a priori known order-
ing. Our models have an advantage when the variables are nominal and no natural order of the
categories exists, even though finding an optimal unidimensional scale is a hard combinatorial
problem. Our multidimensional solutions avoid this problem. Another advantage lies in the anal-
ysis of multivariate transition data where unidimensional solutions are unlikely to fit. Takane
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FIGURE 8.
Relationships between different models through symmetry, rank, and logit restrictions on the association term.

(1987) also proposed a multidimensional model, but adopted a conditional approach. Comparing
the conditional probability model with our distance-association model, the differences are that
IPDA models the conditional probability where we model the joint probability or frequency. In
IPDA, the coordinates of the second set are not estimated but are fixed at the weighted centroid of
the row coordinates. A feature included in the IPDA model is that design matrices can be incor-
porated to fit the row coordinates, which is especially useful when there are multiple predictors
and no interactions are assumed between these predictors. Such design matrices for the row or
column coordinates can be included in our models also. Thus, we can conclude that the IPDA
model is a constrained version of our model.

In Section 2.5.3, relationships were noted between our models and other reduced rank models
for contingency tables. An often-used device for square contingency tables is the quasi-symmetry
model (QS-model; Caussinus, 1965), and it can be shown that the one-mode distance-associa-
tion model is a reduced rank version of the quasi-symmetry model. In full dimensionality the
models are equal. Figure 8 shows relationships between the saturated log-linear, the RC(M)-
association, the quasi-symmetry, and the models defined in the present paper. The QS-model is
equal to the saturated log-linear model with symmetry restrictions on the association parame-
ters. The RC(M)-association model and the two-mode distance-association model impose rank
restrictions on the association term. By imposing metric restrictions on the symmetric associa-
tion terms of the QS-model, the one-mode distance-association model is obtained; by imposing
symmetry restrictions on the RC(M)-association model and the two-mode distance-association
model the one-mode distance-association model is generated. These symmetry restrictions can
only be imposed in the case of square matrices. All these models can also be put in logit formu-
lation. The logit formulation of the log-linear model is the product multinomial model. The logit
formulation of the two-mode distance-association model is known as Gaussian ordination (Ihm
& Van Groenewoud, 1975, 1984). Attempts to approximate the Gaussian ordination model with
correspondence analysis can be found in Ter Braak (1985). By imposing symmetry restrictions on
the Gaussian ordination model, Nosofsky’s model is obtained. This model is a logit formulation
of the one-mode distance-association model. Fienberg and Larntz (1976) showed that the logit
formulation of the QS-model is the Bradley—Terry model (Bradley & Terry, 1952). By imposing
the centroid condition on the Gaussian ordination model, IPDA is obtained.

By building a distance model for two-way contingency tables, we arrived at a reparamet-
rization of the well-known RC(M)-association model. We believe that the distance-association
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models provide a useful tool for the analysis of association, since a distance model has interpre-
tational advantages over inner product models. Particularly, when the RC(M)-association model
with one component does not fit the data, our distance-association models have a clear advantage
in representing the association and log-odds ratios in terms of distances. A simple interpretation of
the odds ratio or log-odds ratio exists in terms of the distances, as does a graphical representation.
Until now such a graphical representation has not been available. The present representation is a
new helpful tool in understanding the association in cross-classified data. Meulman and Heiser
(1998) studied the representation of odds ratios in homogeneity analysis (multiple correspondence
analysis), and in full dimensional space found that the odds are represented as a ratio of distances.
Note, however, that in homogeneity analysis, the full space is projected on a lower dimensionality
and distances are generally not preserved in projection. Here, expressions were provided for the
odds ratios in terms of distances in the low-dimensional space.

Two types of joint plots were distinguished with Type I having an interpretation in terms of
distances and Type II having an interpretation through inner products. Type II plots should always
be made so the inner product relationship is clear, and thus at least one set should be represented
by vectors. Often, inner product models are represented by Type I plots, and we strongly urge the
use of correct plotting procedures, otherwise incorrect interpretations seem unavoidable: when
only points are used to represent the categories of the two sets, interpretation will be based on
distances.

A question that has been kept implicit in the paper but which is basic to the problem under
study is to explain what interaction is: In statistical models, interaction is often seen as the residual
from the independence or main effects model; and on the residual quantities some kind of multi-
plicative model is fitted, called interaction between variables. In psychometrics, in contrast to the
statistical point of view, a distance model is often the starting point, and unique contributions are
fitted to the residuals of the distance model. So it seems that in traditional statistical methods the
emphasis is on main effects, whereas in psychometric models the emphasis is on the association
part. Recent statistical developments like regression trees (Breiman, Friedman, Olshen, & Stone,
1984) also place emphasis on the association or interaction part.

A. Appendix A: Maximum Likelihood Estimation

We will give an algorithm for obtaining coordinates in Euclidean space, first for the one-mode
distance-association model and afterwards for the two-mode distance-association model.

Appendix A.1: ML-Estimation for the One-Mode Distance-Association Model

For the one-mode distance-association model specified in Section 2.2, estimates of the param-
eters can be found by maximizing the likelihood under one of the usual sampling schemes (i.e.,
Poisson sampling, Multinomial sampling or Product Multinomial sampling). The log-likelihood
function under independent Poisson sampling can be written

L=Y" fijloguij— Y tij» (28)
ij

ij

where f;; are the observed frequencies, and u;; the expected frequencies. Expanding

L=fror+ Y firhF 4> f26 —uX'GX
i j

— > expln+ AR + 1§ — uX'A;X]. (29)
ij
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The matrix G has elements g;; = —(fi; + fji) if i # j, and gi; = — >, gir else. We will call
this the Sym-operation.

An iterative method based on the Newton—Raphson theory can be given to maximize this
function. Standard methods show that the Maximum Likelihood Estimates must satisty the fol-
lowing system of equations

fi+ — it =0;
Joj = 4 =0

(f - G) X, = 0, (30)

where the matrix I is defined in the same way as the matrix G but now on the estimated expected
frequencies, and X; is the s-th column of X. Showing the derivation of the third equation, and
taking the derivative of the likelihood function (29) with respect to x;, we get the following

oL

— = -2Gx; +2 Z /:L,']'A,'jXS
0X;

ij
= 2f‘xs — 2Gx;. (31)

Now a fitting scheme can be derived. For the row and column parameter, the updates are standard.
The Hessian for the configuration matrix is a M x M block matrix with each block equal to
PL =28(T—G) -4 jAjxxA 32
m— Tr-6) - Zj:l/«ij ijXsX A, (32)
13
where 8*' is equal to one if s = t, zero otherwise. Each block is of size K x K. The updates in
the ¢ + 1st cycle, according to the Newton—Raphson theory are given by

)LIR(H—I) _ )LlR(t) + (ﬁ+~_ /vl‘iJr); (33)
i+

}L;?(t+1) _ A/C(z) n (f+j~_ IL+./);

’ K+

Vee(X*D) = Vee(X®) — tH™ (IM ®[F — G]) Vee(X®),

where [i is computed using the parameter estimates of the previous cycle. The matrix H™ =
(H 4+ nn’/n'n)~!" — nn’/n'n, with n the null-space of H, is a generalized inverse that satisfies
the Moore—Penrose conditions of H, the Hessian, defined by (32), and t denotes a step-size
determined by a line-search procedure. Vec(-) denotes the operation in which the columns of a
matrix are stacked vertically. The Kronecker product (®) produces a block-diagonal matrix with
the matrix T' — G on the diagonal.

Experience shows that the likelihood function has many local maxima and at convergence
one should always check the relations described by (30). Furthermore, one should check the Hes-
sian because it must be negative semi-definite with M 4+ M (M — 1)/2 eigenvalues equal to zero
(Groenen, De Leeuw, & Mathar, 1996).

To start the iteration process, initial estimates have to be obtained. We follow Becker’s (1990)
procedure but instead of a singular value decomposition we perform an eigenvalue decomposition
on the symmetrized matrix. Another option is to do an eigenvalue decomposition on G. To check
whether the algorithm derived a global optimum, a number of random starts should always be
performed.
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Appendix A.2: ML-Estimation for the Two-Mode Distance-Association Model

The likelihood function under Poisson sampling for the asymmetric distance model becomes
L=fror+ Y fisdhR 4+ fia§ = fydi (X Y)
i j ij
=Y explr +2F + 2§ — a3 (X V)]
ij

= fr4r + Zfi+)‘iR + Z f+j)t,C
i J

—trX'DpX — trY'DcY + 21X’ FY
= > expli + AF 425 — d2 (X V)] (34)
ij
where Dg = diag(}_; fij), Dc = diag(}_; fij), and F is the matrix containing the observed
frequencies. Differentiating (34) with respect to x4, (the coordinate for category a of the row
variable on dimension m),
oL

0Xam

=2 (flaj = faj) Cam = Yjm)- (35)
J

It is well known in least squares that for finding a solution to the MDU problem, an MDS
algorithm can be used in which the input matrix has a special structure. The matrix has size
(I +J) x ({ + J), and in the upper-right block the original contingency table is placed with
the other parts equal to zero. If we apply the Sym-operation to this partitioned matrix a matrix is
obtained with upper-right (I x J) and lower-left J x I corners containing matrices with elements
— fij and — f;;. In the upper-left block, a diagonal matrix with elements equal to the row sums
of our original contingency table is placed; in the lower-left block there is a diagonal matrix with
the column sums of our original contingency table. If this matrix G is multiplied with S (with X
and Y concatenated), the correct form, as described in (35) is generated. To obtain starting values
we can use Becker’s (1990) procedure.

Experience shows that the procedure described here works reasonably well for low-dimen-
sional solutions, but the estimation of the two-mode distance-association model gets troublesome
with large tables in three or more dimensions. In that case, it is better not to use the whole Hessian,
and when only the diagonal is considered the algorithm works well. The algorithm then reduces
to a quasi Newton algorithm in which the Hessian is replaced by a simpler form.
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