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The present paper is concerned with the analysis of repeated transition
frequency tables, for example, occupational mobility data measured in
different cohorts. The association present in such a table will be modeled
by a distance in Euclidean space. A large distance corresponds to a
small association; a small distance corresponds to a large association. A
more direct interpretation is that more transitions occur between cate-
gories that are close together in a social space. It is assumed that the
same social structure (space) exists for the different slices (cohorts/time
points) of a table, but that the dimensions of this space are weighted for
the different slices, i.e., for each slice the dimensions are stretched or
squeezed. We will propose a model, discuss an algorithm to obtain
maximum likelihood estimates and apply the model to an empirical data
set.
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1 Introduction

The present paper considers the analysis of multiple transition frequency tables, that

is transition frequency tables measured at different time-points, in different countries,

or in different cohorts. For the analysis of a single transition frequency matrix DE

ROOIJ and HEISER (2000) presented distance association models. In these models the

association parameters of a log±linear model are transformed to distances in Multi-

dimensional Euclidean space. The idea of using distances for square contingency

tables is quite old: SHEPARD (1957) transformed association parameters of a multi-

plicative model to distances in the context of stimulus recognition data and stimulus

generalization data; GOODMAN (1972) and HABERMAN (1974) describe models for

square contingency tables, where they use one-dimensional distances, and applied

these to occupational mobility data. In the ®eld of stimulus recognition data the early

work of Shepard is further developed (see for example a book edited by ASHBY,

1992). DE ROOIJ and HEISER (2000) generalized the work of GOODMAN and HABER-
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MAN to the multidimensional case. Here we will generalize the symmetric distance

association model proposed by DE ROOIJ and HEISER (2000) to the case of three-way

tables. We assume one common association space, where a small distance corre-

sponds to a large association, and a large distance to a small association. This

common space is weighted for the different time-points/countries/cohorts dimension

wise. In other words, every time-point/country/cohort obtains a weight for each

dimension that shrinks (weight , 1) or stretches (weight . 1) the corresponding

dimension. The distance part of the model to be proposed, is equal to the weighted

Euclidean distance, maybe better known as the INDSCAL-model (CARROLL and

CHANG, 1970). As in the distance association models proposed by DE ROOIJ and

HEISER (2000), association parameters of a log±linear model are transformed to

Euclidean distances. One major advantage of this reparametrization is the fast and

simple interpretation of the ®nal result. A second advantage is a signi®cant reduction

in the number of parameters, especially for large tables.

Earlier papers that describe the weighted Euclidean model in a longitudinal context

are, among others, MCCAIN (1998), WHITE and MCCAIN (1998), RIKKEN, KIERS and

VOS (1995), and ROTH et al. (1992). In none of these papers, the parameters of the

formulated model are estimated using maximum likelihood theory, but all use the

least squares methodology as in the original formulation by CARROLL and CHANG

(1970). CARROLL and GREEN (1997) discuss the use of scaling methods in marketing

research. In order to increase the practical utility of scaling methods in marketing

research, they suggest developing scaling methods under maximum likelihood using

appropriate distributional assumptions. Since for repeated contingency tables the

distributional properties are well known, we will use these properties and estimate

the model parameters using maximum likelihood. RAMSAY (1977, 1982) also

proposed estimating the model parameters of the weighted Euclidean model by

maximum likelihood methods. He, however, assumed a normal or log±normal

distribution for his dissimilarity data. For contingency tables the usual distributional

assumptions are either a Poisson or (product) multinomial distribution. We will

utilize these latter distributional assumptions in this paper.

Before we go into detail about the model, let us have a look at a data set that will

be used to illustrate the proposed methodology. Table 1 is obtained from GANZE-

BOOM and LUIJKX (1995) and considers occupational mobility in The Netherlands in

the period 1970±1993. Five sub-periods are considered, 1970±1974, 1975±1979,

1980±1984, 1985±1989, and 1990±1993. Ten occupational categories were formed

using the EGP-scheme (ERIKSON, GOLDTHORPE and PORTOCARERO, 1979). The

following categories are distinguished: (1) Large proprietors, higher professionals

and managers; (2) Lower professionals and managers; (3) Routine non manual

workers; (4a) Small proprietors with employees; (4b) Small proprietors without

employees; (5) Lower grade technicians and manual supervisors; (6) Skilled manual

workers; (7a) Unskilled and semi-skilled manual workers; (9c) Self employed farm-

ers; and (7b) (Unskilled) agricultural workers. In these kind of data an important

question is: `What do the patterns of intergenerational mobility look like, i.e., what is
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Table 1. Intergenerational Occupational Mobility Table of men in The Netherlands, 1970±1993.

Obtained from GANZEBOOM and LUIJKX (1995). For a description of the categories see text.

son

father (1) (2) (3) (4a) (4b) (5) (6) (7a) (9c) (7b)

1970±1974

(1) 40 30 24 0 5 0 14 7 1 1

(2) 60 91 40 3 4 4 34 9 3 1

(3) 27 43 41 2 2 1 19 10 0 0

(4a) 3 18 8 18 14 0 12 13 0 0

(4b) 16 51 45 18 36 4 36 27 4 3

(5) 2 5 1 0 0 0 4 2 0 0

(6) 25 41 49 5 6 6 113 49 1 2

(7a) 21 32 31 5 9 6 98 90 4 11

(9c) 15 37 26 6 15 2 45 38 116 21

(7b) 3 7 15 1 6 2 29 46 8 23

1975±1979

(1) 97 63 20 7 4 2 22 14 1 1

(2) 91 139 54 4 21 11 32 20 2 2

(3) 47 78 72 4 7 9 45 18 0 2

(4a) 35 34 31 23 17 9 24 15 2 2

(4b) 53 59 57 28 43 11 55 40 7 5

(5) 16 26 24 3 3 12 24 19 0 0

(6) 36 95 83 6 14 40 211 74 3 7

(7a) 30 80 86 11 16 38 163 139 5 13

(9c) 31 69 32 17 17 20 65 60 166 33

(7b) 15 17 15 2 8 9 37 43 11 22

1980±1984

(1) 66 78 48 2 2 7 21 19 0 3

(2) 67 109 74 4 9 7 20 23 0 2

(3) 38 84 69 2 4 8 29 18 2 1

(4a) 17 23 23 9 9 5 23 11 1 1

(4b) 35 47 49 22 25 3 50 29 7 1

(5) 16 26 22 1 2 12 26 11 0 1

(6) 42 105 105 6 12 33 158 101 1 5

(7a) 24 65 80 5 16 23 130 114 1 9

(9c) 30 43 42 9 8 9 53 63 92 16

(7b) 9 11 14 0 2 7 31 27 4 16

1985±1989

(1) 84 89 50 5 3 6 20 24 2 1

(2) 67 179 83 7 10 17 48 44 5 2

(3) 65 128 115 8 7 14 69 62 2 4

(4a) 30 39 38 26 6 2 29 30 3 2

(4b) 47 53 48 19 24 7 46 52 2 1

(5) 18 35 22 0 1 11 24 29 0 2

(6) 76 132 129 19 12 40 234 170 6 5

(7a) 71 117 110 9 13 28 193 220 3 21

(9c) 43 78 53 9 7 9 74 69 119 21

(7b) 9 16 29 1 6 2 28 47 5 12

continued overleaf
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the social distance between occupational categories?' (GANZEBOOM and LUIJKX,

1995, p. 14). A second important question is with regard to the historical changes in

intergenerational mobility: `Are occupational categories getting closer or further

away from each other?' (GANZEBOOM and LUIJKX, 1995, p. 15). We will show that

our distance models developed in this paper are highly suitable for answering these

questions.

The remainder of this paper is organized as follows. The next section describes the

model and some properties of the model. The third section discusses an algorithm to

obtain solutions to the model. In Section 4 we apply the models to the data described

above, and provide a comparison with existing models. We conclude this paper with

a discussion of the obtained results.

2 The Model

As stated in the introduction, we will transform association parameters of a log±

linear model to distances in Euclidean space. First, consider the full log±linear model

for a three-way contingency table

log(ðijk) � ë� ëR
i � ëC

j � ëP
k � ëRC

ij � ëRP
ik � ëCP

jk � ëRCP
ijk ,

where ðijk is the expected frequency for cell ijk, i � 1, . . . , I , j � 1, . . . , J , and

k � 1, . . . , K . Furthermore, ë denotes the general mean, ëR
i , ëC

j , and ëP
k , denote the

main effects of the three variables, and ëRC
ij , ëRP

ik , ëCP
jk , and ëRCP

ijk , denote respectively

the two-way and three-way association terms. Many authors have studied these

models, we refer to BISHOP, FIENBERG and HOLLAND (1975), FIENBERG (1980), and

AGRESTI (1990).

In the present paper we consider a special case, that is the case where I � J , each

slice is square. We will transform all association parameters (i.e., ëRC
ij , ëRP

ik , ëCP
jk , and

ëRCP
ijk ) to a distance in Euclidean space dijk by the Gaussian transformation (see

Table 1. (continued )

son

father (1) (2) (3) (4a) (4b) (5) (6) (7a) (9c) (7b)

1990±1993

(1) 52 94 43 4 7 5 11 17 2 1

(2) 50 121 42 3 6 9 37 26 2 5

(3) 36 65 40 7 4 5 23 20 3 1

(4a) 21 31 17 18 2 1 9 12 0 0

(4b) 8 23 11 6 1 2 14 12 0 1

(5) 14 19 11 2 2 6 8 10 0 1

(6) 32 76 48 5 1 12 80 65 2 1

(7a) 21 45 39 3 7 11 63 59 5 3

(9c) 23 52 14 3 3 7 33 32 61 10

(7b) 5 10 10 1 0 3 19 13 2 2
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SHEPARD, 1957, 1987, NOSOFSKY, 1985; DE ROOIJ and HEISER (2000)). The Gaussian

transformation is a monotonically decreasing function, such that a large distance

corresponds to a small value for the association, and a small distance corresponds to

a large value for the association. We do not distinguish between ®rst-order associa-

tion and second-order association, but all association present in the data is modeled

by distances in Euclidean space. In other words, the distances represent the departure

from independence.

We will use the weighted Euclidean distance (CARROLL and CHANG, 1970) for

modeling the association. The weighted Euclidean distance in squared form is given

by

d2
ijk(X; Wk) �

X
m

w2
km(xim ÿ xjm)2

�
X

m

(wkmxim ÿ wkmxjm)2,

where xim is the coordinate for category i on the m-th dimension (m � 1, . . . , M),

which are captured in a I 3 M-matrix X, and wkm is the weight for slice k for

dimension m, captured in a diagonal matrix Wk . If the weights wkm are equal to one,

the weighted Euclidean distance simpli®es to the Euclidean distance between points i

and j. Transforming all association parameters to the weighted Euclidean distance

using the Gaussian transformation we obtain the following model:

log(ðijk) � ë� ëR
i � ëC

j � ëP
k ÿ d2

ijk(X; Wk): (1)

In square contingency tables the frequencies on the diagonal are often relatively

large compared with the off-diagonal frequencies. In longitudinal research, these

large frequencies come about since people in general do not change. If we try to ®t a

model to a square contingency table, the model often does not ®t because of the large

discrepancies of the diagonal cells. Additional parameters can be incorporated into

the model to adjust for these diagonal cells. A ®rst way to adjust the model is to ®t

parameters to the diagonal in every slice k. The model then becomes

log(ðijk) � ë� ëR
i � ëC

j � ëP
k ÿ d2

ijk(X; Wk)� äijEk
i , (2)

where äij is the Kronecker delta, and Ek
i are the parameters that ®t the diagonal

expected frequencies to the corresponding observed frequencies in slice k. In this

case I 3 K additional parameters are ®tted, and the expected frequencies on the

diagonal of each slice k are set equal to the observed frequencies of that slice.

Another option is to ®t only one set of parameters to the diagonal, i.e., restrict all Ek
i

to be equal for different k. The model then can be written as

log(ðijk) � ë� ëR
i � ëC

j � ëP
k ÿ d2

ijk(X; Wk)� äijEi, (3)

and only I additional parameters are needed. Since the distance from a point towards

itself is zero, the distances and the parameters for the diagonal are not confounded.
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Returning to model (1) for the moment, and using the de®nition of the weighted

Euclidean distance, we obtain the following:

log(ðijk) � ë� ëR
i � ëC

j � ëP
k ÿ

X
m

w2
km(xim ÿ xjm)2

� ë� ëR
i � ëC

j � ëP
k ÿ

X
m

w2
kmx2

im

ÿ
X

m

w2
kmx2

jm � 2
X

m

w2
kmximxjm

� ë� ëR
i � ëC

j � ëP
k ÿ uik ÿ ujk � 2

X
m

w2
kmximxjm: (4)

From this reformulation we see that it would not make much sense to include ®rst-

order interaction terms into model (1), since then these terms would be confounded

with the u-terms in the formulation above, and the interpretation gets troublesome.

To enhance interpretation of our distance model, consider the following: if the

dimensionality of our model is zero, the model becomes the model of mutual

independence (AGRESTI, 1990, pp. 138±139). If all coordinates for every dimension

are equal, the model also reduces to the model of mutual independence. If the

weights are equal to each other, i.e., wkm � 1 for all k and m, the rows and the

columns are jointly independent of the planes (slices). The two-way association

effects (the u-terms in (4)) are equal for the association between the rows and the

planes and the columns and the planes, because of the equality of row and column

coordinates.

DE ROOIJ and HEISER (2000) show their distance association models are reparame-

trization of the RC(M)-association model proposed by GOODMAN (1979, 1985). A

generalization of the RC(M)-association model for multiple sets is given by BECKER

and CLOGG (1989). They proposed multiple group association models, for the

analysis of a set of cross-classi®cations. The model of Becker and Clogg is not

restricted to repeated square contingency tables. The model they propose has the

following form

ðijk � ái(k)â j(k) exp
XMk

m�1

öm(k)ìim(k)í jm(k)

( )
: (5)

The á and â terms are the usual ®rst-order association terms (the main effects are

implied), the ö parameters are called intrinsic association parameters and the ì and

í-parameters are row and column scores, respectively. The row and column scores

are restricted to have zero mean and unit variance. Becker and Clogg propose

restricting parameters to be equal for different slices k, to obtain homogeneous

models. Each of the terms in the exponent part of the model can be restricted. If all

terms are independent of k, the model is equal to the model of no three-way
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association. If Mk � 0 for all k the model is equal to the model of conditional

independence of the row and column variable. If Mk � M� � min(I ÿ 1, J ÿ 1) for

all k the model is equal to the saturated model.

Comparing this model with our distance association model we ®nd that the

multiple group association model has ®rst-order interaction parameters for the

association between the row variable and the plane variable, and the column variable

and the plane variable. In our model these are confounded in the distance term, i.e.,

the u-terms in (4). The restrictions placed on the solution are not the same in our

model and as in the multiple group association model: we restrict the weights to have

a sum equal to one in each dimension, where the row and column scores are restricted

in the multiple group association model; in our distance association model the

coordinates for the rows and columns are restricted to be equal, whereas in the

multiple group association model the scores for the rows and columns are not related.

2.1 Degrees of freedom

It is well known that the maximum rank of a three-way table or a higher-way table is

unknown (KRUSKAL, 1977, 1989; TEN BERGE et al., 1988; TEN BERGE, 1991;

SICILIANO and MOOIJAART, 1997). Therefore it is dif®cult to assess the degrees of

freedom for a particular model. The number of degrees of freedom for model (1) in

this paper is obtained as follows: for the ë-parameters we subtract the usual number,

i.e., the number of categories minus one. It is well known that the weighted Euclidean

model has no rotational freedom, so the number of parameters for the distances are

(I ÿ 1) 3 M , since the solution can be centered without loss of generality. For the

weights we have to estimate K 3 M parameters, which are constrained to have mean

equal to one in every dimension. The number of independent parameters for model

(1) is equal to 2(I ÿ 1)� (K ÿ 1)� (I ÿ 1) 3 M � (K ÿ 1) 3 M . For models with

diagonal terms, I or K 3 I have to be added to this number of independent

parameters. We will subtract this number of independent parameters from the number

of cells minus one, as is most often done in the analysis of three-way contingency

tables. The total number of degrees of freedom the model equation (1) then becomes

IJK ÿ I ÿ J ÿ K � 2ÿ (I � K ÿ 2) 3 M .

2.2 Odds ratios

As is shown by DE ROOIJ (2000) the proposed model (1) does represent three-way

association as measured by the second-order odds-ratio. We will brie¯y discuss the

®ndings here. The second-order odds-ratio (èii9jj9kk9), also called the ratio of odds

ratios for a 2 3 2 3 2-subtable, is de®ned by

èii9jj9kk9 � ðijkði9j9kði9jk9ðij9k9

ði9j9k9ði9jkðij9kðijk9
:

This second-order odds ratio is a measure of three-way association, not dependent on

the marginal frequencies of a table, which is an important property of a measure of
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association. Developing the logarithm of the second-order odds ratio under our model

we obtain

log(èii9jj9kk9) � 2
X

m

(w2
km ÿ w2

k9m) 3 (ximxjm � xi9mxj9m ÿ xi9mxjm ÿ ximxj9m)

� 2
X

m

(w2
km ÿ w2

k9m) 3 (xim ÿ xi9m)(xjm ÿ xj9m):

The logarithm of the second-order odds ratio equals zero if and only if either

wkm � wk9m, for all m, or xim � xi9m for all m, or xjm � xj9m for all m.

The conditional odds ratio is a measure of two-way association in one slice (k) of

our three-way table, and is de®ned by

èii9jj9jk �
ðijkði9j9k

ði9jkðij9k
:

Under our model the conditional odds ratio is equal to

log(èii9jj9jk) �
X

m

w2
km(xi9m ÿ xjm)� w2

km(xim ÿ xj9m)
�

ÿw2
km(xim ÿ xjm)ÿ w2

km(xi9m ÿ xj9m)
�

� 2
X

m

w2
km(ximxjm � xi9mxj9m ÿ xi9mxjm ÿ ximxj9m)

� 2
X

m

w2
km(xim ÿ xi9m)(xjm ÿ xj9m):

This is the same form as derived by DE ROOIJ and HEISER (2000) for a two-way table

(i.e., only one source) when we set the weight for each source k on each dimension

equal to one (i.e., equal dimension weights). If we de®ne yk
im by yk

im � wkmxim and

collect these in a matrix Yk , we can rewrite the conditional odds ratio for slice k as

log(èii9jj9jk) � d2
i9j(Y

k)� d2
ij9(Y

k)ÿ d2
ij(Y

k)ÿ d2
i9j9(Y

k),

so the conditional odds ratio can be fully expressed in terms of distances.

For the models including terms for the diagonal cells (models (3) and (2)) the

expressions for the second-order odds ratio and the conditional odds ratio should be

adapted to include these parameters.

3 ML-estimation and ®t

3.1 An elementary Newton algorithm

To ®nd a solution to the model we make use of an elementary Newton algorithm. In

general an update for a parameter èi, is given by

è t�1
i � è t

i ÿ h(èi)
ÿ1q(èi),
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where h(èi) and q(èi) are the second and ®rst derivative of the likelihood function

with respect to parameter èi, respectively.

The log-likelihood function for the most general model (2) can be written and

developed as

L � f���ë�
X

i

f i��ë
R
i �

X
j

f� j�ë
C
j �

X
k

f��kë
P
k

ÿ
X

ijk

f ijkd2
ijk

(X; Wk)�
X

ijk

f ijkäijEk
i ÿ

X
ijk

3 exp ë� ëR
i � ëC

j � ëP
k ÿ d2

ijk(X; Wk)� äijEk
i

n o
� f���ë�

X
i

f i��ë
R
i �

X
j

f� j�ë
C
j �

X
k

f��kë
P
k

ÿ
X

ijk

f ijk

X
m

w2
km(xim ÿ xjm)2 �

X
ijk

f ijkäijEk
i ÿ

X
ijk

3 exp ë� ëR
i � ëC

j � ëP
k ÿ

X
m

w2
km(xim ÿ xjm)2 � äijEk

i

( )
:

The ®rst and second derivatives with respect to the marginal parameters and

diagonal parameters are standard, see for example AGRESTI (1990, chapter 6). We

will derive here the derivatives with respect to the coordinates and the weights. In the

appendix we will provide an algorithm scheme.

First, for the coordinates xim, the ®rst derivative of the log-likelihood function is

given by

q(xim) � 2
X

jk

(ã̂ijk ÿ gijk) 3 w2
km(xim ÿ xjm), (6)

where gijk � f ijk � f ijk if i 6� j, else giik �
P

l gilk , and ã̂ijk is de®ned correspond-

ingly on the expected frequencies. The second derivative is given by

h(xim) � 2
X

jk

(ã̂ijk ÿ gijk)w2
km ÿ 4

X
jk

(w2
kmxim ÿ w2

kmxjm)2: (7)

For the weights wkm the ®rst derivative is given by

q(wkm) � 2
X

ij

(ð̂ijk ÿ f ijk) 3 wkm(xim ÿ xjm)2, (8)

where ð̂ijk is the expected frequency for cell ijk. The second derivative is given by
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h(wkm) � 2
X

ij

(ð̂ijk ÿ f ijk) 3 (xim ÿ xjm)2 ÿ 4
X

ij

ð̂ijk(wkm(xim ÿ xjm)2):

(9)

Starting values

Here we will provide starting values for the algorithm; be aware that these starting

values do not ensure that we will ®nd a global optimum. Experience shows that the

likelihood function has many local maxima. To get an idea whether we found a global

maximum, multiple starts using different values should always be performed.

The ë-parameters: For these parameters we follow BECKER (1990). The starting

value for the parameter corresponding to the general mean is ë0 �Pijk log f ijk=
I 3 J 3 K. For the marginal parameters we set ëR0

i � (log f i��=I)ÿ ë0, ëC0

j �
(log f� j�=J )ÿ ë0, and ëP0

k � (log f��k=K)ÿ ë0.

The coordinate-parameters: We can rewrite the likelihood function in matrix

terms, we then obtain the following

L � f���ë�
X

i

f i��ë
R
i �

X
j

f� j�ë
C
j �

X
k

f��kë
P
k

ÿ
X

k

tr W2
kX9GkX�

X
ijk

f ijkäijEk
i

ÿ
X

ijk

exp ë� ëR
i � ëC

j � ëP
k ÿ tr W2

kX9AijX� äijEk
i

n o
,

where Wk is the diagonal matrix with the weights for slice k, and Gk has elements

gijk as de®ned earlier. Focusing now on the ®rst part of the likelihood function,P
ijk f ijk logðijk we derive the following for the coordinates

L � ÿ
X

k

tr WkX9GkXWk :

Assuming all Wk are equal to the identity matrix (i.e., no time differences), and

optimizing this part for X under X9X � I, we ®nd the maximum for X through an

eigenvalue decomposition on the matrix G� �
P

kGk: the eigenvectors correspond-

ing to the smallest eigenvalues give the optimum. These eigenvectors can be used as

an initial estimate.

The weights: Following the same strategy as for the coordinate parameters we have

to ®nd the optimum for ÿPk tr W2
kAk where Ak � X9GkX. If we now optimize

under 1=K
P

kWk � I, we ®nd a solution by

Wk � diag(ËAÿ1
k ),
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where Ë � K 3 (
P

k diag(Ak)ÿ1)ÿ1.

Convergence

To check convergence we evaluate the sum of the absolute values of the likelihood

equations. This sum must be smaller then a pre-speci®ed value. The likelihood

equations for the marginal parameters are given by

8i ð̂i�� ÿ f i�� � 0,

8 j ð̂� j� ÿ f� j� � 0,

8k ð̂��k ÿ f��k � 0,

For the coordinates the likelihood equation is given byX
k

W2
k 
 (Ã̂k ÿGk) Vec(X) � 0,

where Ã̂k has elements ãijk as de®ned earlier, Vec is the operation that stacks the

columns of a matrix vertically, and 
 denotes the Kronecker product. For the weights

the likelihood equation is given by

8k X9(Ã̂k ÿGk)XWk � 0:

After each iteration these values are checked. Futhermore, the likelihood value is

checked after each iteration. If in 100 consecutive cycles the likelihood does not

increase with a pre-speci®ed small value, the algorithm is assumed to be converged.

General remarks

A small simulation study indicates that the algorithm works quite well. We made data

according to a known pattern with I � 5 and K � 4. Data were produced with

sample sizes of 10000, 5000, 2500, 1000, 500, and 100. With a sample size of 100

the algorithm did not work, but in that case the mean observed frequency is 1 per

cell, and the number of observed zero cells is too large. In all other cases, the

algorithm reproduced the generated frequencies exactly. We used one smart start and

15 random starts. In general, we think that when good starting values are provided

the algorithm as described in the appendix works quite well and is stable. If starting

values are bad, most often, the algorithm stops in the ®rst few iterations because of a

decrease of likelihood.

3.2 Fit indices

We will evaluate the models by the traditional chi-squared distributed statistics. The

Pearson X 2 statistic is de®ned as
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X 2 �
X

ijk

( f ijk ÿ ð̂ijk)2

ð̂ijk

,

where ð̂ijk denotes the maximum likelihood estimate of the expected frequency. The

Likelihood Ratio statistic is de®ned as

LR � 2
X

ijk

f ijk log
f ijk

ð̂ijk

:

The Likelihood Ratio statistic can be used to compare two models that are nested.

The Likelihood Ratio statistic under the independence model gives us a measure for

the total amount of association in a table. If we have a distance model in M-

dimensions (D(M)), we can de®ne the percentage association accounted for (%AAF,

see DE ROOIJ and HEISER, 2000; GOODMAN, 1971) as

%AAF � 100 3
LRI ÿ LRD(M)

LRI

,

where LRI is the Likelihood Ratio statistic under the Independence Model, and

LRD(M) the Likelihood Ratio statistic under a distance model in M dimensions. As is

shown by De Rooij and Heiser, for large tables the chi-square distributed statistics in

general dismiss a model because of the sample size. The %AAF can then be used to

verify whether a model ®ts well enough, i.e., whether the model accounts for enough

association in the data. Residuals can be used to have a closer look at the pattern of

deviance, that is which cells ®t the model well, and which cells do not ®t the model.

4 Data analysis

As an illustration for the proposed models we will analyze the data in Table 1 with

models in one- two- and three-dimensions. In our opinion, more dimensions do not

give any insight into the data in a visual manner, and the advantages of our distance

association models above other models disappear. First we analyzed the data using

the model of independence, it strongly deviates from the data (X 2 � 7662:15,

LR � 5627:92, df � 477). These are the base statistics against which we will com-

pare our distance models.

We used one start with the starting values described in the previous section and 15

random starts, and selected the model with the highest likelihood from these sixteen

runs. (For the three-dimensional model with diagonal parameters we had to do more

random starts to obtain a solution with a higher likelihood than the three-dimensional

model without diagonal parameters.) The ®t statistics for models in one-, two- and

three-dimensions are given in Table 2. We did analyze the data with model (1) and

model (3), that is without terms for the diagonal and with one set of diagonal

parameters for all K slices. The percentage association accounted for are all quite

large except for the one-dimensional model without diagonal terms. The inclusion of

a set of parameters for the diagonal sets increases the ®t considerably. The difference
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of the two-dimensional and one-dimensional model, both with diagonal parameters,

is 5% of association accounted for. Of the association not accounted for by the uni-

dimensional model, the two-dimensional model accounts for 18%. We will discuss

the solution of the two-dimensional model with one set of parameters for the diagonal

in the remainder of this section.

4.1 Interpretation of the parameters

Here we will give a detailed discussion on the interpretation of all parameters of the

selected model, the two-dimensional distance association model with one set of

parameters to account for the large diagonal frequencies. We will start with the

marginal parameters, then discuss the distances, the weights and the diagonal

parameters. Each set of parameters pertain to a speci®c part of the data: the marginal

parameters pertain to the main effects, the distances pertain to the association in the

off-diagonal cells in every slice, and the diagonal parameters pertain to the associa-

tion in the diagonal cells of every slice. We will see that all parameters have a clear

and natural interpretation.

The marginal parameters

The marginal parameters provide information about the differences of occurrence of

the occupational categories for the fathers (ëR
i ) and for the sons (ëC

j ), or the number

of people in the different slices (ëP
k ). For example, in the ®rst transition table a total

of 15000 people were interviewed, and in the second only 7000. We do not want that

difference to in¯uence our result. This is exactly what ëP
k accomplishes. The

differences in occurrence of (occupational) categories for the fathers (or more

generally, at the ®rst time-point) over all transition tables is re¯ected in ëR
i , and for

the sons (or more generally, the second time-point) over all transition tables in ëC
j .

The parameters for our selected model are given in Table 3 and 4.

The marginal parameters for the fathers indicate they have the highest probability

of being an unskilled or semiskilled worker (7a) and a small probability of being a

lower grade technician/manual supervisor (5) or a small proprietor with employees

Table 2. Goodness-of-®t measures for the analysis of Table 1

Model Measure 1 dim 2 dim 3 dim

Distance-model X 2 3302 2122 1194

LR 2844 1714 1192

%AAF 49.4% 69.5% 78.8%

df 464 451 438

Distance-model X 2 1641 1218 1057

plus diagonal-term LR 1500 1230 1023

%AAF 73.3% 78.1% 81.8%

df 454 441 428
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(4a). For the sons, they are very unlikely to be a self-employed farmer (9c), and the

highest probability is of their being a lower professional or manager (2).

The ë period
k indicate the number of people asked in the different periods. These

totals are 1921, 3405, 2844, 4111, and 1884 respectively. The same order as the size

of the parameters.

The distances and the weights

The distances re¯ect the number of transitions, after taking the marginal effects out,

in an inverse manner: a small distance corresponds to a large number of transitions; a

large distance corresponds to a small number of transitions. The common plot with

distances dij(X) does give us exactly the information to answer the ®rst question

stated in the introduction: `What do the patterns of intergenerational mobility look

like, i.e., what is the social distance between occupational categories?'

For the data of Table 1 the distances are shown in Figure 1. We can distinguish a

group consisting of large proprietors/higher professionals and managers (1), with

lower professionals and managers (2) and routine non-manual workers (3) at the top

indicating many transitions occur among these three categories. Another group

consists of lower grade technicians/manual supervisors (5) with skilled (6) and

unskilled/semi-skilled manual workers (7a). Small proprietors with (4a) and without

(4b) employees are a third group. Self employed farmers together with (unskilled)

agricultural workers constitute the fourth cluster. Within these clusters many transi-

tions occur, the number of transitions between the clusters is smaller.

The vertical axis almost corresponds with the ordering as given in the table, except

for the categories unskilled/semi-skilled manual worker (7a) and self employed

farmers (9) which are interchanged. We can label the vertical axis as a social status

dimension. The horizontal axis can be interpreted as an urbanization-axis: the desk

cluster and the manual cluster against the small proprietor cluster with the agricultur-

al cluster. The desk and manual categories are often found in the large cities; the

Table 3. Marginal and diagonal parameters for occupational categories

Parameter 1 2 3 4a 4b 5 6 7a 9c 7b

ë father
i ÿ0.27 0.10 ÿ0.19 ÿ0.53 0.34 ÿ1.11 0.57 0.72 0.34 0.02

ëson
j 0.96 1.39 0.92 ÿ0.97 ÿ0.61 ÿ0.56 0.99 0.88 ÿ2.08 ÿ0.93

Ei 0.36 0.20 0.32 1.28 0.36 0.62 0.35 0.06 3.28 0.46

Table 4. Marginal parmeters for periods

70±74 75±79 80±84 85±89 90±93

ë period
k ÿ0.31 0.22 0.05 0.40 ÿ0.37
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farmers and small proprietors are more often found in small villages. Moreover, in

the large cities, small proprietors have a dif®cult time because large enterprises often

kill their business.

The second question: `Are occupational categories getting closer or further away

from each other?' is answered by the weights of each slice. If the weights become

smaller the categories are getting closer together; if the weights become larger the

categories are getting further apart. Figure 2 shows the weights for the analysis of

Table 1 in a graphical way.

The vertical dimension becomes more important from period 1 to period 5, the

weights are getting smaller, indicating the categories are getting closer. The horizon-

tal dimension is stretched from period 1 to 5; categories are getting further apart. The

vertical dimension corresponds closely to the dimension found by GANZEBOOM and

LUIJKX (1995), who also found a shrinkage of this dimension. They argued that

categories are getting closer together. In our result, the horizontal axis stretches.

Where the groups 1, 2, 3, 4a, and 4b get closer to the other categories (5, 6, 7a, 9c,

7b), the groups 1, 2, 3, 5, 6, 7a get differentiated from the categories 4a, 4b, 9c, and

7b. The traditional ordering of the categories is vanishing, i.e., transitions between

manual jobs and desk jobs occur more often. A reason might be that the manual jobs
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Fig. 1. The common plot for the analysis of Table 1.
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increasingly involve computer handling and not that much real hand craft. The

horizontal dimension stretches, so the gap between people living in the city and

people living in villages or in the country is widening. Over time these transitions are

getting less probable.

The weights in Figure 2 are close. To check whether they have a signi®cant

contribution we performed an analysis. In this analysis we keep the weights for all

slices ®xed at one. As starting values for the procedure we used the results of the

analysis with the distance association model in two dimensions with parameters for

the diagonal (i.e., the results described in the current section). The likelihood ratio

statistic for this analysis with all weights equal to one is LR � 1324. Comparing this

likelihood ratio statistic with the one obtained earlier, we obtain ÄLR �
1324ÿ 1230 � 96 with 8 degrees of freedom. This is a signi®cant contribution: the

weights cannot be set equal to zero without loss of information.

The diagonal terms

The diagonal parameters can be interpreted as `immobility' parameters, or `inheri-

tance' parameters. A positive value means more sons follow their fathers in the
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Fig. 2. The weights for the analysis of Table 1.
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corresponding occupational category than can be expected on basis of the distance

part and the marginal parameters. A negative value has the reverse meaning, that is, a

smaller number of sons follow their fathers than can be expected from the marginal

parameters and the distance part. Since the distance between a category and itself is

zero, the diagonal cells give departure from the marginal expectations, just as in the

quasi-independence model. In Table 3 (last line) we give the values of the `inheri-

tance' parameters.

All estimates are larger than zero, indicating more sons follow their fathers than

can be expected on the basis of the marginal parameters. The estimate for the self

employed farmer (9c) is extremely high; many farmer's sons become farmers

themselves, probably because they take over their father's farms. Few sons follow

their fathers into being lower professionals or managers (2), or unskilled and semi-

skilled workers (7a).

The odds ratio

In Section 2 we saw there was a direct relationship between the conditional odds ratio

and the squared distances in the corresponding space (formula 6). Since the selected

model includes inheritance parameters, the odds ratios have to be adapted corre-

spondingly. As an example, let us look at the conditional odds of inheritance of being

a routine non manual worker (category 3) or a small proprietor with employees

(category 4a) versus changing between these two categories, i.e., the odds ratio

log
ð3,3jk 3 ð4a,4ajk
ð3,4ajk 3 ð4a,3jk

 !
� 2d2

3,4a(Yk)� E3 � E4a:

Since distances are positive by de®nition, and all the inheritance parameters are

positive, we see that the odds are positive, and so the odds are in favor of inheritance,

i.e., the probability that a son will follow his father in choice of occupation is larger

than the probability that the son chooses another occupation.

The inheritage parameters are the same regardless the value of k. The conditional

odds ratio changes because of the distance part. Comparing the ®rst period with the

®fth, we see that

d3,4a(Y1) , d3,4a(Y5):

The conditional odds ratio for the ®rst period is smaller than the conditional odds

ratio for the ®fth period, indicating that a change between categories 3 and 4a is made

more often in the ®rst period than in the ®fth period.

4.2 Comparison

In this section we will compare the results found above with results obtained using

two other procedures: the weighted Euclidean model estimated by least squares
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methods and the multiple group association model proposed by BECKER and CLOGG

(1989). In both cases we will look for a two-dimensional solution.

The weighted Euclidean model estimated by least squares

In our distance association model, the distances represent the association, so before

applying a distance model we have to preprocess the data in order to delete the

marginal effects. Therefore, ®rst the observed frequency matrix is divided by the total

frequency to obtain observed probabilities ( pijk). From these probabilities the main

effect parameters of the multiplicative model are estimated, i.e., the probabilities for

the categories for the father ( pi��), the probabilities for the categories of the sons

( p� j�), and the probabilities for the different cohorts ( p��k), by summing. Next, we

obtain residuals (èijk) by dividing the observed probabilities by the product of the

main effects

èijk � pijk

pi�� 3 p� j� 3 p��k

:

Before applying the inverse of the Gaussian transformation to these èijk , the èijk

should be between zero and one. Therefore, we added 0.01 to all èijk , and then divide

all by the maximum of the èijk , i.e.,

çijk � (èijk � 0:01)

max(èijk � 0:01)
:

Then, these çijk can be transformed to dissimilarities by the inverse of the Gaussian

transformation

äijk �
���������������������������������
(ÿ1 3 log(çijk))

p
,

which can be used as dissimilarities in a multidimensional scaling procedure.

To estimate the weighted Euclidean model we used the PROXSCAL program

implemented in SPSS (BUSING, COMMANDEUR, and HEISER, 1997; MEULMAN,

HEISER, and SPSS INC., 1999). We used a classical scaling start, a simplex start and

50 random starts. The analysis with classical scaling starting values resulted in the

®nal lowest stress value (normalized raw stress � 0.07807). We transformed the

distances obtained through PROXSCAL back to association parameters via the

Gaussian transformation. As a last step we computed parameters for the diagonal

entries of the slices. Therefore, ®rst the expected probabilities were computed by

~ðijk � pi�� 3 p� j� 3 p��k 3 exp (ÿd2
ijk(X; Wk))

and then we computed pii� as follows

pii� � 1

K

X
k

pijk

~ðiik

� �
:

Now, expected probabilities can be computed (ð̂ijk) for model (3), and multiplied by
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the sample size to obtain expected frequencies under this model. The chi-square

statistics are X 2 � 2527 and LR � 1276. We can compare these statistics with the

statistics we found in Table 2, for the two-dimensional model plus diagonal terms.

We see that the ®t statistics for our distance association model in two-dimensions are

better.

In Figures 3 and 4 we give the results from the PROXSCAL analysis. PROXSCAL

uses different identi®cation constraints on the weights than we do in our distance

association model. We give here the PROXSCAL solution with the same constraints

as in our distance association model. Comparing Figures 3 and 4 obtained here with

the ones earlier (®gures 1 and 2) we see that the pattern obtained with the distance

association model is much more interpretable. In the PROXSCAL solution for the

weights no nice trend can be seen, contrary to the weights obtained with our distance

association model. The common spaces are much alike (after rotation), although our

solution gives a clearer clustering onto four clusters of occupational categories as

discussed in the previous section.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1

2

3

4a

4b

5

6

7a

9c

7b

1

2

3

4a

4b

5

6

7a

9c

7b

Fig. 3. The common plot obtained with PROXSCAL.
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The multiple group association model

In Section 2 we already discussed the multiple group association model proposed by

BECKER and CLOGG (1989). Here we will compare the results obtained with that

model to the results obtained with our distance association model. In our distance

association model we transformed all association terms into distances. We showed

that this model represents two-way association since it is a quadratic model (see

Equation 4). The multiple group association model does not have such quadratic

terms. Therefore the comparison of the two models cannot be totally fair. We will

discuss two models, one including two-way association terms and one without.

Moreover we will restrict the multiple group association model such that the row

scores (ìim(k)) and the column scores (í jm(k)) are equal for all k, just as the coordinate

matrix in our distance association model is the same for every slice. The model

without two-way association terms is written, in log±linear notation, as

log(ðijk) � ë� ëR
i � ëC

j � ëP
k �

X
m

ö(k)
m ìimí jm � äijEi, (10)

and the model including two-way association terms is written as
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Fig. 4. The weights obtained with PROXSCAL.
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log(ðijk) � ë� ëR
i � ëC

j � ëP
k � ëRP

ik � ëCP
jk �

X
m

ö(k)
m ìimí jm � äijEi: (11)

In both models we can restrict the row scores (ìim) to be equal to the column scores

(íim) to obtain symmetric association models.

We used the program l EM to estimate the models (VERMUNT, 1997). In Table 5

the results of models 10 and 11 are reported. For model 10 we tried one smart start as

implemented in the program and 50 random starts, in all cases the program aborted

because of a decrease of the likelihood during the iterative process. Model 10 with

symmetry restrictions is most comparable to our distance association model. We see

that it does not ®t as well as our distance association model in two dimensions. When

we include association terms for the occupational categories of father and son with

cohort (ëRP
ik and ëCP

jk , respectively), the ®t gets much better, but we have to estimate

much more parameters. Including these parameters in our distance association model

is also possible but, as we showed in Section 2, the interpretation gets troublesome

since the parameters are confounded. A word of caution is needed here on the

multiple group association model without symmetry restrictions: the interpretation of

the association (the relation of the row scores with the column scores) is not based on

distances but on projection. We think that plots with points for both row and column

categories are intuitively interpreted by distances.

5 Discussion

In the present paper we generalized the symmetric distance association model

proposed by DE ROOIJ and HEISER (2000) for two-way tables, to the case of repeated

transition tables. We think the model proposed is highly suitable for answering

questions coming from substantive research, as illustrated in our application. Trends

over time are visualized by a set of weights that easily represents changes. The

common plot represents the mean transition frequency in a graphical way. The model

reduces the number of parameters to estimate signi®cantly, and allows for an easy

interpretation of the ®nal results. All parameters have a clear and straightforward

interpretation.

We showed a model for the analysis of repeated transition frequency tables, where

the association is transformed to a distance in Euclidean space. We transformed all

two- and three-way association parameters to distances, such that the distances model

Table 5. Goodness-of-®t measures obtained with mul-

tiple group association model

Model X 2 LR df

model 10 �� �� ��
model 10-sym 1469 1278 441

model 11 502 513 353

model 11-sym 694 659 369
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the departure from independence. We could have chosen differently, for example, by

also including in model (1) association parameters for the association between

occupational category of the father with the period, and an association effect of

occupational category for the son with the period. Such an approach will probably

lead to a better model in terms of model ®t. However, such an approach troubles the

interpretation of the complete model, as we showed in Section 2, since those ®rst

order-interaction effect confound with the distances.

The differences between the slices k are captured in the weights. This might be

considered rather restricted, because only stretching or shrinking of the dimensions is

allowed. Another model, called the IDIOSCAL model (CARROLL and WISH, 1974),

or the generalized Euclidean model, could also be applied . In this model, rotations

of the dimensions are allowed before stretching or shrinking occurs (i.e., the matrices

Wk are not restricted to be diagonal, but have to be nonsingular).

In the context of occupational mobility data the effects found are often symmetric

(see for example, HABERMAN, 1974, Chapter 6; SOBEL, HOUT, and DUNCAN, 1985).

When the association is not symmetric, a generalization we can think of is the

unfolding model, in which different sets of coordinate parameters are estimated for

the row categories and for the column categories. This way we allow for asymmetry

in the association. The distance part of the model is then equal to

d2
ijk(X; Y; Wk) �

X
m

w2
km(xim ÿ yjm)2,

and we obtain an asymmetric association pattern since, in general,

d2
ijk(X; Y; Wk) 6� d2

ijk(X; Y; Wk). So, the number of people going from a to b does

not need to be the same as the other way around (from b to a), even after adjustment

to the marginal proportions. A model in between the Euclidean distance and the

unfolding distance is the slide-vector distance, proposed by ZIELMAN and HEISER

(1993). They restrict the yjm to be equal to yjm � xjm ÿ ím. In this model the

asymmetry is represented by a vector.

Appendix

In Section 3 we derived the ®rst- and second-order derivatives of the log-likelihood

function. Here we will show the algorithm scheme for the distance association

models. In our opinion, the identi®cation constraint on the weights (i.e.,

(1=K)
P

kWk � I) can best be implemented after each iteration. In that case the

algorithm is more stable. The steps are as follows:

1. Derive starting values for all parameters, i.e., è0.

2. Update ëR
i :

ëR( t�1)
i � ëR( t)

i ÿ (~ði�� ÿ f i��)=~ði��,

where ~ð denotes the expected frequencies computed after the previous update.
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3. Update ëC
j :

ëC( t�1)
j � ëC( t)

j ÿ (~ð� j� ÿ f� j�)=~ð� j�:

4. Update ëP
k :

ëP( t�1)
k � ëP( t)

k ÿ (~ð��k ÿ f��k)= ~ð��k :

5. Update xim:

xt�1
im � xt

im ÿ h(xim)ÿ1q(xim),

where h(xim) is de®ned as in (7), and q(xim) is de®ned as in (6).

6. Update wkm:

wt�1
km � wt

km ÿ h(wkm)ÿ1q(wkm),

where h(wkm) is de®ned as in (9), and q(wkm) is de®ned as in (8).

7. If we choose to do so, update the diagonal parameters Ek
i :

Ek( t�1)
i � Ek( t)

i ÿ (~ðiik ÿ f iik)=~ðiik ,

or for Ei:

E( t�1)
i � E( t)

i ÿ (~ðii� ÿ f ii�)=~ðii�:

8. Check convergence. If not converged go to 2, othrwise continue.

9. Compute Fit statistics.
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