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Visualizing, Summarizing, and Comparing Odds Ratio Structures

Abstract

The odds ratio is one of the main measures of association in 2× 2 tables. For

larger tables, summary measures of association have been proposed as well as mod-

eling strategies, where the odds ratios can be deduced from the parameters of a

model. We propose a computationally simple scaling methodology, which gives a

summary measure of association and a visualization of the odds ratio structure. Dif-

ferent variants of the methodology are discussed and compared, both theoretically

and empirically. The methodology is also generalized to multiple tables, where not

only the structure of each table is important, but also comparisons among tables.

Key words: Singular value decomposition; Odds ratio; Graphical displays; Contin-

gency tables
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1 Introduction

Without doubt the odds ratio is one of the main measures of association in 2×2 frequency

tables, for example in the disease-exposure paradigm. Let the cell probabilities of a 2×2

table of variables X and Y be defined by πij = P (X = xi ∩ Y = yj), where xi is the

i-th category of X and yj is the j-th category of Y . The odds ratio γ is a measure of

association for the two binary variables X and Y and is defined by

γ =
π11π22

π12π21

. (1)

In practical research applications, the number of row classifications and column classifica-

tions often exceed two. When X and Y have I∗ and J∗ categories respectively and i < i′

denote two different categories of the row variable X, and j < j ′ denote two different

categories of the variable Y , the association is described by the set of odds ratios:

γiji′j′ =
πijπi′j′

πij′πi′j
, 1 ≤ i < i′ ≤ I∗, 1 ≤ j < j′ ≤ J∗. (2)

This defines a set of (I∗(I∗ − 1))/2× (J∗(J∗ − 1))/2 different odds ratios, which will be

called the complete set. However, this complete set is redundant and there exist basic

sets of (I∗−1)(J∗−1) odds ratios that capture all the information about the association

between the variables. Two basic sets will be considered here (for others see Agresti,

1984, p. 21), the local odds ratios defined by

γ
(l)
ij =

πijπi+1j+1

πij+1πi+1j

, 1 ≤ i ≤ (I∗ − 1), 1 ≤ j ≤ (J∗ − 1) (3)

and the spanning cell odds ratios (here with the cell i = 1, j = 1 as spanning cell)

γ
(s)
ij =

π11πij

π1jπi1

, 2 ≤ i ≤ I∗, 2 ≤ j ≤ J∗. (4)

The superscripts distinguish the two basic sets of odds ratios. The spanning cell odds

ratios are useful when one of the categories defines a control or reference group. In that

case, all other categories are described against this reference group. The local odds ratios

are useful for ordinal variables when all local odds ratios are larger or equal to 1 (i.e., a

positive relationship). We will call such basic sets odds ratio structures.

Given either set of odds ratios, all other odds ratios may be derived. For the local

odds ratio by

πijπi′j′

πij′πi′j
=

∏

i≤k<i′

∏

j≤l<j′
γ

(l)
kl , (5)
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and for the spanning cell odds ratio by

πijπi′j′

πij′πi′j
=

γ
(s)
ij γ

(s)
i′j′

γ
(s)
ij′ γ

(s)
i′j

. (6)

These relationships turn to additive relationships for the log of the odds ratios. Let us

denote the log(γ) = δ. Then, for the local odds ratio

log

(
πijπi′j′

πij′πi′j

)
=

∑

i≤k<i′

∑

j≤l<j′
δ
(l)
kl . (7)

Similarly, for the spanning cell odds

log

(
πijπi′j′

πij′πi′j

)
= δ

(s)
ij + δ

(s)
i′j′ − (δ

(s)
ij′ + δ

(s)
i′j ). (8)

A basic set of log odds ratios will be gathered in a matrix. Define I = I∗ − 1 and

J = J∗ − 1 and denote the I × J matrix with local odds ratios by Γl = {γ(l)
ij } and their

logarithms by ∆l = {δ(l)
ij }. Similarly for the spanning cell odds ratios, Γs = {γ(s)

ij } and

∆s = {δ(s)
ij }.

Although the total number of odds ratios to check is reduced from (I∗(I∗ − 1))/2 ×
(J∗(J∗ − 1))/2 to (I∗ − 1)(J∗ − 1), in applications where I∗ or J∗ is large, the number

of odds ratios needed to capture the association structure may still be too large to gain

insight into the nature of the relationship between the variables. Therefore alternative

strategies have been developed to overcome interpretational problems. The first strategy

is modeling the frequencies, and the second is through summary measures of association.

An approach to the analysis of contingency tables is to analyze the data with some

model (for example, the log-linear model) and see how the odds ratios are obtained from

the parameters of the model at hand. Examples of such approaches include log-linear

models, the RC(M)-association model, and the R+C association model.

In log-linear models, the logarithm of the expected frequencies (Fij) is described by

log(Fij) = λ + λA
i + λB

j + λAB
ij , (9)

see Bishop, Fienberg, and Holland (1975) or Agresti (2002). Given the log-linear model,

the odds ratio is

γiji′j′ = exp
(
λAB

ij + λAB
i′j′ − λAB

i′j − λAB
ij′

)
. (10)

The R+C association model is defined as (Goodman, 1979)

Fij = αiβjµ
j
iν

i
j, (11)
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where the µi’s and νj’s are row and column scores, respectively, and the superscripts

indicate powers. To obtain the odds ratio from expression (11), define

γi. = µi+1/µi

γ.j = νj+1/νj.

The values of local odds ratios are

γ
(l)
ij = γi.γ.j. (12)

This model is not invariant under permutations of row and/or column order, and is

usually applied when the variables are ordinal.

Goodman (1979, 1985) proposed the RC(M)-association model, defined as

Fij = αiβj exp

(
M∑

m=1

φmµimνjm

)
, (13)

where µim and νim are row and column scores on dimension m, and φm is a measure

of the strength of the association. Graphical displays of the RC(M)-association model

represent two sets of vectors, one for the rows with coordinates φ1/2
m µim and one for the

columns columns with coordinates φ1/2
m νim. The interpretation is through inner products,

i.e. the association equals the length of a row vector times the length of a column vector

times the cosine of the angle between the two vectors. Given this model the odds ratio

γiji′j′ is given by

γiji′j′ = exp

(∑
m

φm(µim − µi′m)(νjm − νj′m)

)
(14)

Define the vectors µ̃ii′ = µi − µi′ , where µi = [µi1, . . . , µiM ]T and ν̃jj′ = νj − νj′ with

νj = [νj1, . . . , νjM ]T , then (14) can be rewritten as

γiji′j′ = exp
(
µ̃T

ii′Dφν̃jj′
)

= exp

(∑
m

φmµ̃ii′mν̃jj′m

)
, (15)

where Dφ is a diagonal matrix with φ1 . . . φM on the diagonal. This is again a usual inner

product relationship, as is the interpretation of the vectors of the graphical display of

the RC(M)-association model.

De Rooij and Heiser (2005) show that the graphical display resulting from the RC(M)-

association model can also be interpreted using a distance rule instead of an inner product

3



rule. Define µ∗
i = Dτ

φµi and ν∗j = D1−τ
φ νj for some power τ , then the odds ratios can be

expressed in terms of distances as

γiji′j′ = exp
(

1

2
d2(µ∗

i′ ,ν
∗
j ) +

1

2
d2(µ∗

i , ν
∗
j′)−

1

2
d2(µ∗

i ,ν
∗
j )− 1

2
d2(µ∗

i′ ,ν
∗
j′)

)
, (16)

where d2(µ∗
i ,ν

∗
j ) is the squared Euclidean distance between the points with coordinates

µ∗
i and ν∗j .

To summarize, we have discussed several modeling strategies for representing associ-

ation between variables where association is defined in terms of odds ratios; however, in

all of these models, odds ratios are functions of the model parameters, which obscures the

relationship between the variables. In other words, the representation of the odds ratios

is indirect. On the other hand, all odds ratios (not just a basic set) can be obtained from

such procedures and the models can provide some insight into structure in the data.

The second approach is to summarize the association using one quantity. There

is an extensive literature on such summary measures (see, for example, Altham, 1970;

Agresti, 1980; Dale, 1986; Edwardes & Baltzan, 2000). Some measures are typically

designed for ordinal variables where a direction of association is sought, others provide

only information about the amount of association, but no direction.

Altham (1970) proposed a measure based on spanning cell odds ratios, which is de-

fined1 as

θAs(p) =


 1

I × J

∑

i

∑

j

|(δ(s)
ij )|p




1/p

, p ≥ 1. (17)

When there are zero cells in the cross-classification of the variables, .5 is added to each

cell. This measure can also be defined on the local odds ratio which will be denoted

by θAl
(p). In both cases the measure does not give a direction of association, and is

therefore suitable for nominal variables, i.e. variables with unordered categories. For

ordered variables θAl
(p) defined on local odds ratios could be redefined without taking

the absolute value to obtain a directed association measure (θAo(p)). When p = 2,

θAl
(p) = θAo(p).

For a two by two table the odds ratio can be written in terms of Goodman and

Kruskal’s gamma, γGK (Goodman & Kruskal, 1979). Because γGK is also defined for

larger tables with ordered variables, Agresti (1980) used this relationship to propose a

1Altham does not use the mean but the sum, i.e. without standardizing for table size.
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generalized odds ratio (θGOR) measure for ordinal tables

θGOR =
1 + γGK

1− γGK

. (18)

Edwardes and Baltzan (2000) provide an interpretation and discuss properties of this

measure.

Another basic set of odds ratios is given by the global cross ratios (see Agresti,

1984), which are the odds ratios given by collapsing the row and column variables into

dichotomies. A summary measure is obtained by taking the mean of the values in this

basic set, i.e.

θGCR =
1

I × J

I∑

i

J∑

j

(∑
a≤i

∑
b≤j πab

) (∑
a>i

∑
b>j πab

)
(∑

a≤i

∑
b>j πab

) (∑
a>i

∑
b≤j πab

) . (19)

Edwards and Baltzan (2000) use this summary measure as a measure of comparison,

whereas Dale (1986) proposed modeling the basic set. There may be problems when

some cells contain zero observations. The remedy is to add a .5. The measures by

Agresti (1980) and Dale (1986) take into account the direction of association, i.e. they

are suitable for ordinal variables. These summary measures of association do not provide

detailed insight into which categories are (most) responsible for the association and which

not.

In this paper, we provide a scaling methodology based on the singular value decom-

position where the representation is direct (as opposed to indirect as in the models for

frequency tables discussed above) and from which we get a summary measure of asso-

ciation. The procedure can be applied to a table with a basic set of odds ratios or log

odds ratios. It is well known that from these structures all other odds ratios can be

obtained (equations 5, 6, 7, and 8) and it will be discussed whether this translates into

our graphical representation, and if so, how it translates.

In the case of multiple tables, it is often of interest whether the association differs

among the tables or has a similar form. Association models have been generalized by

Clogg (1982), but like association models for a single table, the representation of associ-

ation is indirect. Summary measures can be obtained for each of the tables, and using

confidence intervals, it can be verified whether the association differs. We will generalize

our scaling method to such multiple tables, where again summary measures are obtained

plus a direct graphical display.
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The remainder of this paper is organized as follows. The next section will discuss

the singular value decomposition on which our methodology is based. We will also

generalize the singular value decomposition to the case of multiple tables where odds ratio

structures have to be compared. Section 3 discusses the application of the singular value

decomposition to tables with (log) odds ratio structures. Properties of these applications

will be shown. In section 4 the methods will be applied to empirical data sets and we

will conclude (Section 5) with some discussion.

2 The Singular Value Decomposition

2.1 One table

Let A be a general I × J matrix with rank M . There exists an I ×M matrix X such

that XTX = IM , an J ×M matrix Y such that YTY = IM and an M × M diagonal

matrix D with positive elements, such that

A = XDYT =
M∑

m=1

xmdmyT
m, (20)

where xm is the m-th column of X, ym is the m-th column of Y, and the singular values

are ordered, d1 > d2 > . . . > dM . For a proof we refer to Magnus and Neudecker (1988).

This decomposition is called the singular value decomposition (SVD).

The Eckart-Young theorem (1936) states that the best least squares rank M∗ approx-

imation to a matrix A is given by the first M∗ singular values plus corresponding singular

vectors; that is,

AM∗
=

M∗∑

m=1

xmdmyT
m, (21)

with loss equal to
∑M

m=M∗+1 d2
m.

Decomposition (20) where A equals Γl or ∆l was proposed in Goodman (1979) as

Model I and Model II, respectively. These models were then further developed into the

R+C and RC association models, discussed in the previous section. As shown earlier

the representation of the odds ratio in either of these models is not direct. Here we will

follow a route that leads to a direct representation.

A joint plot of a matrix A with SVD A = XDYT is obtained by plotting the rows of A

as vectors with coordinates U = XDτ and the columns of A as vectors with coordinates
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V = YD1−τ , where τ usually equals zero, one or a half. The inner product of the vectors

represents the values in the cells of matrix A. In other words, âij =
∑M∗

m=1 uimvjm and

for the graphical display the following relationship holds

M∗∑

m=1

uimvjm = |ui||vj| cos(ui,vj), (22)

where |ui| is the length of vector ui and similarly for |vj|, and cos(ui,vj) is the cosine

of the angle of the two vectors at the origin. Alternatively, (22) can be interpreted in

terms of the length of ui and the length of the projection of vj onto ui, or the other way

around.

2.2 Multiple Tables

In the case where there are K tables, the SVD can be generalized as follows

Ak = XkDkY
T
k , (23)

for k = 1, . . . , K, and where XT
k Xk = YT

k Yk = I, and Dk are diagonal matrices with

ordered values like before.

Dimensionality restrictions can be imposed as well as, restrictions on, for example,

the row vectors such that Xk = X for k = 1, . . . , K. Similar restrictions can be imposed

on the column vectors or the singular values. The loss can be measured using the least

squares criterion

K∑

k=1

||Ak − Âk||2. (24)

The decomposition (23) applied to tables of conditional local (log) odds ratios, in-

cluding adding restrictions on the parameters over tables, was proposed by Clogg (1982)

for analyzing groups of two-way tables by the RC(M)-association model. When equality

restrictions are placed on the row and column vectors (i.e., Xk = X and Yk = Y for

all k) but not the singular values (i.e., Dk), the decomposition has the same form as the

CANDECOMP/PARAFAC decomposition (Carroll & Chang, 1970), which is a special

case of Tucker’s 3-mode decomposition (Tucker, 1964, 1966; Kroonenberg, 1983). The

orthogonality restrictions XTX = YTY = I are not necessary in the CANDECOMP de-

composition; however, they will continue to be imposed in our generalization to multiple

tables.
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An algorithm to fit models to multiple tables with various combinations of equality re-

strictions on Xk, Yk and Dk is presented in the Appendix. The algorithm is implemented

in MATLAB and SAS/IML, which can be obtained from the authors’ websites2.

3 Properties of Applied SVDs to (Log) Odds Ratio

Structures

In this section we will apply the SVD to tables with basic sets of odds ratios or log odds

ratios. Although the main interest is in the basic set chosen for a specific application,

we will also check whether the relationships between a basic set and all odds ratios, as

defined in (5), (6), (7), and (8) transfers to the graphical display obtained through the

SVD.

Summary measures will be defined based on the singular values in each of the cases.

We first discuss decompositions of ∆s and ∆l (basic sets of log odds ratios); thereafter,

decompositions of Γs and Γl (basic sets of odds ratios).

3.1 Application to log odds ratio structures

A singular value decomposition on a basic set of log odds ratios is performed. Here

the interest is in the relationship between a basic set and the complete set, and how

the complete set can be obtained from a graphical representation of a basic set. The

additivity relationships discussed in (7) and (8) transfer to an additivity relationship of

singular vectors as shown in the following two theorems.

Theorem 1: Application of the SVD to ∆l turns relationship (7) into additivity of

singular vectors.

Proof: Each element of the matrix ∆l is described by δ
(l)
ij =

∑
m dmximyjm = uT

i vj. Then

log

(
πijπi′j′

πij′πi′j

)
=

∑

i≤k<i′

∑

j≤l<j′
δ
(l)
kl

=
∑

i≤k<i′

∑

j≤l<j′
uT

k vl

=


 ∑

i≤k<i′
uk




T 
 ∑

j≤l<j′
vl


 (25)

2www.leidenuniv.nl/fsw/mderooij or www.psych.uiuc.edu/˜ canderso
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2

Theorem 2: Application of the SVD to ∆s turns relationship (8) into subtraction of

singular vectors.

Proof: Each element of the matrix ∆s is described by δ
(s)
ij = uT

i vj. Then

log

(
πijπi′j′

πij′πi′j

)
= δ

(s)
ij + δ

(s)
i′j′ −

(
δ
(s)
ij′ + δ

(s)
i′j

)

= uT
i vj + uT

i′vj′ − uT
i′vj − uT

i vj′

= (ui − ui′)
T (vj − vj′). (26)

2

The singular values can be used to construct a summary measure of association.

θII(p) =

(
1

I × J

M∑

m=1

dp
m

)1/p

, p ≥ 1. (27)

which can be used for spanning cell as well as local log odds ratios. When p = 2, this

measure equals Altham’s measure with p = 2.

3.2 Application to odds ratio structures

When the SVD is applied to a basic set of odds ratios (as compared to log odds ratios

in the previous section) the multiplicative rules of obtaining the complete set (5) and (6)

do not transfer to simple rules of the graphical display. For the spanning cell approach,

however, we have a rather remarkable result.

Theorem 3: If the SVD is applied to Γs and only one dimension is retained, then

relationship (6) results in odds ratios equaling unity.

Proof: Each element of Γs is described by γs
ij = d1xi1yj1. Then

πijπi′j′

πij′πi′j
=

γs
ijγ

s
i′j′

γs
ij′γ

s
i′j

=
(d1xi1yj1)(d1xi′1yj′1)

(d1xi′1yj1)(d1xi1yj′1)

= 1 (28)

2

Although the decomposition can be used to provide insight into a basic set, it should not

be used to obtain values of the complete set.
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A measure of overall association for an I∗ × J∗ contingency table in case of the

decomposition of a table with odds ratios is

θIn =
M∑

m=1

∣∣∣∣∣log

(
dm√
I × J

)∣∣∣∣∣ , (29)

where the logarithm is taken to ensure the same effect of positive and negative association.

When there is no association all odds ratios equal one. Applying the SVD to an I×J table

of ones gives constant singular vectors and a singular value equal to
√

I × J . This latter

value is thus the neutral value in a multiplicative sense and is used as a standardizing

factor. For 2 × 2-tables this measure equals the absolute value of the log odds ratio.

Taking the exponent of θI would give a measure with the same domain as the odds ratio.

This measure does not take into account a direction of association. A modification for

ordered categories is given by

θIo =
M∑

m=1

log

(
dm√
I × J

)
, (30)

where an indication of direction is given. In such a case one should define the measure

on the local odds ratio structure.

4 Application to Empirical Data

In this section we will apply our methods to empirical data sets. The first is discussed

in Edwardes and Baltzan (2000), the second in Williams and Grizzle (1972) and Dale

(1986)

To obtain stability estimates of parameters, data reuse methods can be used, like the

bootstrap and the jackknife. The jackknife procedure will be exploited here since for

contingency tables it is computationally efficient (Clogg & Shidadeh, 1994, pp. 34-38;

Dayton, 1998, pp. 22-23). Let ξ be any parameter of interest and ξ̂ be its estimator. For

a data set with n observations, an estimate of ξ is obtained for n samples where the i-th

observation is deleted, i = 1, . . . , n. Let ξ̂−i be the estimate with the i-th observation

deleted. The estimated standard error using the jackknife is defined as (see Dayton, 1998,

pp. 22-23)

SEJ(ξ̂) =

√√√√ n

n− 1

n∑

i=1

(ξ̂−i − ξ̂)2. (31)
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There is some evidence that the standard errors obtained from the jackknife procedure

are somewhat too large (see Dayton, 1998, p. 37), although our personal experiences

are that in the context of maximum likelihood the standard errors obtained through the

jackknife are almost identical to those obtained with Newton-Raphson (if available). In

general the number of computations to be done is equal to the sample size; however,

for contingency tables each observation in a given cell produces the same calculation as

other observations in this cell. Therefore, the number of calculations reduces from the

sample size (n) to the size of the contingency table (I∗ × J∗). Confidence intervals are

obtained from these estimated standard errors by ξ̂ ± 1.96× SEJ(ξ̂).

Our scaling procedure results in multidimensional solutions, and the interest is not

only in the standard error per estimate but also in correlations between the estimates over

dimensions. Therefore confidence regions should be obtained. The jackknife procedure

results in IJ configurations each occurring nij times. Not all these configurations will be

shown but clouds are represented that cover 95% of the configurations (see Meulman &

Heiser, 1983). These clouds represent confidence intervals for the vectors. The SVD is

unique upto a reflection of the dimensions, which can artificially enlarge the computed

confidence regions. This is easily remedied by reflection of the jackknifed solution into

the direction of the solution on the original table.

4.1 Analysis of a single table

Table 1 of Edwardes and Baltzan (2000) classifies apnoea quartiles (1st; 2nd; 3rd; 4th)

against scores of sleepiness (0-11). For such ordered variables it seems most natural

to look at the local odds ratios. Since there are a large number of zeros in the data,

the frequencies are smoothed first by adding a .5 to all. The values of all summary

measures discussed in this paper are given in Table 1. From this table we see that

the θII(1) measure is similar to the generalized odds ratio (θGOR) and global cross ratio

(θGCR), while θII(2) is more in the range of Altham’s measures. The θI values seem

to have another range, but the confidence intervals show that these measures can vary

widely. Both measures for ordinal association (θAo(1) and θIo) are much smaller then

their variants for unordered categories implying that the association is not in the same

direction everywhere. Moreover, their confidence intervals include one, showing that there

is no uniform direction of association, which can also be concluded from the confidence
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interval of θGCR. The value of θGOR and θGCR differ slightly from the values in Edwardes

and Baltzan (2000), this is probably due to the manner of dealing with zeros3. Edwardes

and Baltzan (2000) report θGOR = 1.34 with a 95% confidence interval (1.09, 1.65) which

is similar to our jackknife results.

[Table 1 about here.]

For the analysis of the log of the local odds ratios (∆l) the singular values are 6.36,

3.45, and 1.17 for dimensions 1 to 3, respectively, so the loss for the two-dimensional

solution is only 2.5%. To see what the association pattern looks like, we give the two

dimensional solution in Figure 1. In the figure, we use the labels ‘12’, ‘23’ and ‘34’ for the

rows (i.e., first quartile versus the second, second versus the third, and third versus the

fourth) and the labels ‘ab’ to ‘kl’ for the columns. The row categories are plotted using

coordinates XD1/2 the column categories as YD1/2. The odds ratios are represented

in Figure 1 by the projection of the column points (e.g., ‘ab’) onto the row vectors.

Alternatively, we can also look at the projections of the row points (e.g., ‘12’) onto the

column vectors. The longer the projection, the higher the odds ratio.

[Figure 1 about here.]

From Figure 1 we see that the assumption of ordinal association is violated. If the

variables were ordinal then all local log odds ratios should have been larger or equal

to zero, i.e. have an angle less than 90o, which is clearly false. A closer look at the

plot reveals that the local odds ratios for the first two rows are positive with ‘ab’, ‘cd’,

‘de’,‘ef’,‘hi’, and ‘ij’, while they are negative (obtuse angle) for ‘bc’,‘fg’, ‘gh’, and ‘jk’.

The ordering of local odds ratios for the first two rows ‘12’ is

ij > ef > hi > ab > cd > de > 0 > jk > kl > fg > bc > gh.

For row 2 versus 3 (‘23’) the order from low to high is

jk > gh > fg > bc > ef > 0 > cd > ab > de > kl > hi > ij

3It is unclear to us how Edwardes and Baltzan (2000) do this.

12



and finally for rows 3 versus 4 (‘34’) the order is

kl > ij > hi > de > bc > fg > 0 > gh > cd > ab > ef > jk.

We can also work the other way around and project the row points onto the vector

‘ij’ and we see that ‘12’ projects higher, so the local odds ratio for rows 1 versus 2 and

columns i versus j is higher than the local odds ratio in rows 1 versus 2 and these columns.

Since the vector for rows 2 versus 3 (compared to 12 and 34) is the longest, the

association is strongest in this comparison.

The additivity relation discussed in Theorem 1 is shown in Figure 2 for the row

categories. For example, to get ‘13’ we add vectors ‘12’ and ‘23’. The same could be

done for the column categories, and when represented in the same plot gives the complete

set of odds ratios.

[Figure 2 about here.]

4.2 Analysis of Multiple Tables

The second analysis is originally from Williams and Grizzle (1972, see also Dale, 1986

and Edwardes & Baltzan, 20004) and classifies pain levels (I = 3; none (1); slight (2);

moderate (3)) against medication use (J = 4; never (a); seldom (b); occasionally (c);

regularly (d)) after four kinds of surgery for duodenal ulcer (K = 4; A: VD ; B: VA ;

C: RA; D: VH). The question is whether pain level and medication are associated, and

whether the association between pain and medication is different for the four operations.

Since the variables pain and medication appear to be ordinal, we analyzed ∆l, which are

defined on each of the slices, i.e. after each of the four operations. Table 2 presents the

loss values of the different models. Based on the loss values presented in Table 2, the

choice of a final model is not clear cut in this case. If a plot is made of loss values against

the number of parameters of all models, those with two dimensions are clearly superior to

those with only one dimension. Of those with two dimensions, the models basically fall on

a line (i.e., fewer parameter, more loss). Considering goodness-of-fit of the model to data,

parsimony, and interpretation, two models stand out as good representations of the data:

4The data in Edwardes and Baltzan (2000) differs from that reported in Williams and Grizzle (1972)

and Dale (1986), we used the data as reported in Williams and Grizzle.
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the model defined by Ak = XkDYT having loss 7.34 with 9 estimated parameters and

model Ak = XDkY
T with loss 5.97 and 12 estimated parameters. The interpretation of

the first model is that there is an equal association between pain and medication after the

four kinds of operations, but the pain levels have a different interpretation for the groups,

i.e. ‘slight’ pain has another meaning in group A compared to group B and similarly for

the other categories and other groups. The interpretation of the second model is that the

amount of association is different after the four operations, but that the pain levels and

medication use have identical interpretations in each of the four groups. Our preference

is for this second model, which we discuss further.

[Table 2 about here.]

Although the amount of association is different, the pain and medication categories

have the same meaning after the four operations. The summary measures of association

are θII(1) = 0.91, 0.68, 0.87, and 0.47 for operations (slices) A through D, respectively;

the values θII(2) = 1.58, 1.24, 1.54, and 0.86 for the operations A through D, respectively.

It seems that after operation D the amount of association is much smaller than after the

other three, a conclusion that is in agreement with that in Dale (1986) and Williams and

Grizzle (1972). The graphical display with XDk versus Y is shown in Figure 3.

The graphical display reveals that the association is strongest for operations (slices)

A and C since the vectors representing these slices are relatively long. The association is

not very strong for operation D , i.e. the vectors are relatively short. Most of the angles

are smaller than 90o, indicating positive relationships. The exceptions in all operations

(slices) are the local odds ratios of rows 2 versus 3 (slight and moderate pain) and columns

a and b (never and seldom medication use), and in slices B and C the local odds ratios

for rows 1 and 2 (none and slight pain) and columns b and c (seldom and occasionally

use of medication). Most of the association is, however, positive. Because the vectors

for operations A and D are close, the association patterns of slices A and D are similar.

The pattern in A is stronger, which can be seen by the length of the vectors. Similarly

the association patterns of operations (slices) B and C are similar.

For none versus slight pain (rows 1 and 2) after operations (slices) A and D the order

of local odds ratios is
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ab > cd > bc,

while for operations B and C we have the order

ab > cd > 0 > bc.

For slight versus moderate pain (rows 2 and 3) in all slices we have the order of lo-

cal odds ratios

cd > bc > 0 > ab.

To verify whether the association none versus slight pain (in rows 1 and 2) with never

versus seldom medication use (columns a and b) is larger after operation A or B (slices),

we can project the points A12 and B12 onto the vector ‘ab’, and see that A12 project

higher, i.e. has a larger value of the local odds ratio.

[Figure 3 about here.]

5 Discussion

For two-way frequency tables, the joint distribution of X and Y is completely determined

by the marginal distributions and a basic set of odds ratios. An analysis of odds ratios was

proposed in this paper. Together with the marginal distributions the analysis provides

us a complete description of the contingency table.

Our new proposed methods provide summary measures as well as direct graphical

displays of the odds ratio structures. The summary measures were compared to existing

measures in Table 1. The proposed analysis is based on ideas presented in Goodman

(1979). From these ideas the R+C-association model and the RC(M)-association model

were built in Goodman (1979, 1985). Our scaling method is computationally simpler com-

pared to the maximum likelihood estimation of the RC(M)-association model. Moreover,

our method is invariant when all cells in a row or column are multiplied by a constant,

since under such transformations the (log) odds ratios remain the same. For the RC(M)-

association model this is not true, i.e. the row and column scores change when a row or
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column of the contingency table is multiplied by a constant.

The generalization to multiple tables was proposed by Clogg (1982), but like Goodman

he parameterized the ideas to models for the frequencies in a contingency table. Our

parametrization has the advantage that it provides a direct interpretation of the odds

ratio structure in the data. Furthermore, our estimation method always results in the

global optimum; whereas, maximum likelihood estimation of the RC(M)-association

models and their three-way generalizations sometimes yield a local optimum.

Comparing the decompositions on odds ratios or log odds ratios we can conclude the

following. Methods for the log of the odds seem better than for the odds themselves. This

is probably due to the fact that the distribution of the odds ratio is very skew, i.e. the

range 0−1 equals the range 1−∞. It seems harder for the singular value decomposition

to represent this skewness. Moreover, the translation of the results obtained by the SVD

for the spanning odds ratios in a single dimension to the complete set, as discussed in

Theorem 3, is a real drawback and complicates its use of spanning odds ratios. Moreover,

the summary measures obtained by such a decomposition θI seem very unstable (see

confidence intervals in Table 1). Along with a particular decomposition comes a measure

of association. As the decomposition of the log odds ratios has some advantages the

association measure is θII(p), where only a choice of p is needed. The choice p = 2 has

the additional advantage that the measure is equal to that of Altham (1970), for which

properties were deduced.

The choice between an analysis of local or spanning cell odds ratios should be made on

data theoretical grounds, as was done in the examples. If the categories have a natural

ordering an analysis of the local odds ratios is recommended; whereas, when there is

a comparison or baseline category, the spanning cell approach seems to be the better

choice.

To conclude we note two analysis procedures for contingency tables that employ the

singular value decomposition. The first was proposed by Becker (1992) to obtain an

exploratory analysis of association models. In his procedure first log-linear models are

estimated and then the SVD is applied to the centered interaction parameters. It is

shown that the estimates do approximate the maximum likelihood estimates of asso-

ciation models quite well. Graphical displays obtained in this procedure have to be

interpreted in a similar fashion as in association models, i.e. odds ratios are represented
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indirectly. Secondly, correspondence analysis also uses the singular value decomposition.

In correspondence analysis, the residuals from the independence model are decomposed

using the SVD. Recently, Heiser (2004) showed that from the correspondence analysis

solution the odds (and thus their ratio) can be obtained by a ratio of two distances that

can be read from the display, but this yet again is an indirect representation.

Appendix: Algorithm

An algorithm for finding the singular values and vectors for multiple matrices with and

without equality restrictions over matrices on the vectors or values is presented. The

algorithm is described for general matrices, Ak, but it can also be applied to matrices of

(log) odds ratios, ∆k. We seek the Xk, Yk and Dk that minimize the least squares loss

function,
K∑

k=1

||Ak −XkDkY
T
k ||2,

where XT
k Xk = YT

k Yk = IM∗ , and Dk is an (M∗ ×M∗) diagonal matrix.

The algorithm is an application of an optimization method proposed by Kiers (Kiers,

1990; Kiers & Ten Berge, 1991). The basic idea is that the least squares loss function

is iteratively replaced by a majorizing function that has an easily found minimum. The

algorithm proceeds as follows:

1. Obtain starting values by finding the first M∗ singular values and vectors of Ak for

k = 1, . . . , K.

2. Up-date X
[t]
k : For each k, use the current estimates of X

[t]
k , Y

[t]
k and D

[t]
k to compute

the singular value decomposition of

X
[t]
k +

1

d2
11k

(
AkY

[t]
k D

[t]
k −X

[t]
k D

[t]2
k

)
= PkΛkQ

T
k , (32)

where d2
11k is the largest diagonal element of D

[t]2
k , and set

X[t+1] = PM∗kQ
T
M∗k (33)

where PM∗k and QM∗k are the first M∗ left and right singular vectors found in (32).

3. Up-date Y
[t]
k : For each k, use the current estimates of X

[t]
k , Y

[t]
k and D

[t]
k to compute

the singular value decomposition of

Y
[t]
k +

1

d2
11k

(
AT

k X
[t]
k D

[t]
k −Y

[t]
k D

[t]2
k

)
= PkΛkQ

T
k , (34)
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where d2
11k is the largest diagonal element of D

[t]2
k , and set

Y[t+1] = PM∗kQ
T
M∗k, (35)

where PM∗k and QM∗k are the first M∗ left and right singular vectors found in (34).

4. Up-date D
[t]
k : For each k, use the current estimates of X

[t]
k , Y

[t]
k and D

[t]
k to compute

D
[t+1]
k = diag

(
X

[t]T
k AkY

[t]
k

)
. (36)

5. Check for convergence. If the solution has not converged, go back to step 2.

Equality restrictions on Xk, Yk and Dk can be imposed over k by appropriate modi-

fications of the up-dating equations. To impose the restriction that X1 = . . . = XK = X,

equations (32) and (33) would be replaced by

X[t] +
1∑

k d2
11,k

(∑

k

(
AkY

[t]
k D

[t]
k

)
−X[t]

∑

k

(
D

[t]2
k

))
= PΛQT ,

and

X[t+1] = PM∗QT
M∗ ,

respectively, and X
[t]
k would be replaced by X[t] in equations (34) – (36). Likewise, the

restriction Y1 = . . . = YK = Y can be imposed by replacing equations (34) and (35) by

Y[t] +
1∑

k d2
11k

(∑

k

(
AT

k X
[t]
k D

[t]
k

)
−Y[t]

∑

k

(
D

[t]2
k

))
= PΛQT ,

and

Y[t+1] = PM∗QT
M∗ ,

respectively, and replacing Y
[t]
k by Y[t] in all other equations. The up-dating equation to

impose the restriction D1 = . . . = DK = D is

D[t+1] =
1

K

∑

k

diag
(
X

[t]T
k AkY

[t]
k

)
.
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Figure 1: Two dimensional display of the local odds ratio structure for apnoea-sleepiness
data. We used labels ‘12’, ‘23’, ‘34’ for the rows (i.e. first quartile versus second; second
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23



Component 1

C
om

po
ne

nt
 2

A12

A23

B12

B23

C12

C23

D12

D23

ab

bc

cd

Figure 3: Two dimensional display of the local odds ratio structure for pain-medication
data. We used labels ‘A12’ and ‘A23’ for the rows (i.e. first pain level versus second;
second versus third) in slice A, and ‘ab’ to denote columns ab, i.e. never versus seldom.
95%-confidence regions are obtained using a jackknife procedure.

24



List of Tables

1 Summary measures of association for apnoea versus sleepiness data. Con-
fidence intervals are obtained using a jackknife procedure. (* denotes that
the exponent is taken of this measure since it is a measure on a log odds
ratio scale.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Loss values for different constrained singular value decompositions log odds
ratios from data set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

25



Table 1: Summary measures of association for apnoea versus sleepiness data. Confidence
intervals are obtained using a jackknife procedure. (* denotes that the exponent is taken
of this measure since it is a measure on a log odds ratio scale.)

measure θAl
(1) * θAl

(2) * θAo(1) * θGOR θGCR θII(1) * θII(2) * θIn * θIo *
value 2.65 3.58 1.02 1.31 1.59 1.39 3.58 10.26 6.04
95% ci (1.73, 4.05) (2.18, 5.87) (.95, 1.11) (1.06, 1.56) (0.76, 2.43) (1.22, 1.59) (2.18, 5.87) (1.62, 65.07) (.09, 399.66)
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Table 2: Loss values for different constrained singular value decompositions log odds
ratios from data set 2
(Between parenthesis are the number of parameters estimated)

Model 2 dim 1 dim
XkDkY

T
k 0 (24) 15.01 (16)

XkDkY
T 3.35 (15) 21.25 (10)

XDkY
T
k 0.38 (21) 21.28 (13)

XkDYT
k 2.21 (18) 16.22 (13)

XkDYT 7.34 (9) 24.30 (6)
XDYT

k 3.97 (15) 23.24 (10)
XDkY

T 5.97 (12) 23.79 (7)
XDYT 9.86 (6) 26.46 (4)
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